doi: 10.17586/2226-1494-2019-19-3-443-450


AMMONIUM SULPHATE EFFECT ON CHARACTERISTICS OF YAG:Yb NANOPOWDERS AND OPTICAL CERAMICS

M. S. Nikova, A. A. Kravtsov, I. S. Chikulina, F. F. Malyavin, V. A. Tarala, D. S. Vakalov, D. S. Kuleshov, L. V. Tarala, E. A. Evtushenko, V. A. Lapin


Read the full article  ';
For citation:
Nikova M.S., Kravtsov A.A., Chikulina I.S., Malyavin F.F., Tarala V.A., Vakalov D.S., Kuleshov D.S., Tarala L.V., Evtushenko E.A., Lapin V.A. Ammonium sulphate effect on characteristics of YAG:Yb nanopowders and optical ceramics. Scientific and Technical Journal of InformationTechnologies,Mechanics and Optics, 2019,vol.19,no.3,pp.443–450 (in Russian).doi:10.17586/2226-1494-2019-19-3-443-450


Abstract
Subject of Research. The paper presents the study of ammonium sulfate concentration effect on the content of impurities and the morphology of oxyhydrate powders and ceramic powders. Method. The synthesis of precursor powders was carried out by the method of reverse heterophase precipitation from chlorides. The method of energy dispersive analysis of the elemental composition was used to analyze the dynamics of changes in the concentration of chlorine and sulfur impurities in oxyhydrate powders and ceramic powders. The morphology of the experimental samples was evaluated according to scanning electron microscopy. Analysis of the agglomeration degree was performed using X-ray phase analysis methods and the BET gas adsorption method. Main Results. It was found that the usage of ammonium sulfate not only reduces the degree of agglomeration of ceramic powders by two orders of magnitude but also reduces the chlorine impurity concentration from 0.2 at. % to less than 0.01 at. %. In addition, the possibility of controlling the value of the specific surface area in the range of 1.5–15 m2/g by changing the concentration of ammonium sulfate was revealed. Practical Relevance. Applying an improved technique for the synthesis of ceramic powders, samples of optical ceramics were obtained with light transmission in the visible and near-IR range of more than 70% without taking into account the absorption bands of ytterbium.

Keywords: garnet, reverse co-precipitation, surfactant, anion impurities, YAG:Yb nanopowders, specific surface area, agglomeration degree

Acknowledgements. This study was carried out with the support of the Advanced Research Foundation, contract No. 6/023/2014-2017 dated December 15, 2014.

References
1. Hostasa J., Esposito L., Malchere A., Epicier T., Pirri A., Vannini M., Toci G., Cavalli E., Yoshikawa A., Guzik M., Alombert- Goget G., Guyot Y., Boulon G. Polycrystalline Yb3+-Er3+- co-doped YAG: Fabrication, TEM-EDX characterization, spectroscopic properties, and comparison with the single crystal. Journal of Materials Research, 2014, vol. 29, no. 19, pp. 2288– 2296. doi: 10.1557/jmr.2014.206
2. Sanghera J., Kim W., Villalobos G., Shaw B., Baker C., Frantz J., Sadowski B., Aggarwal I. Ceramic laser materials. Materials, 2012, vol. 5, no. 12, pp. 258–277. doi: 10.3390/ma5020258
3. Tang F., Lin Y., Wang W., Yuan X., Chen J., Huang J., Ma C., Dai Z., Guo W., Cao Y. High efficient Nd:YAG laser ceramics fabricated by dry pressing and tape casting. Journal of Alloys and Compounds, 2014, vol. 617, pp. 845–849. doi: 10.1016/j.jallcom.2014.08.083
4. Zhang W., Lu T.C., Wei N., Shi Y.L., Ma B.Y., Luo H., Zhang Z.B., Deng J., Guan Z.G., Zhang H.R., Li C.N., Niu R.H. Co-precipitation synthesis and vacuum sintering of Nd:YAG powders for transparent ceramics. Materials Research Bulletin, 2015, vol. 70, pp. 365–372. doi: 10.1016/j.materresbull.2015.04.063
5. Kravtsov A.A., Chikulina I.S., Tarala V.A., Evtushenko E.A., Shama M.S., Tarala L.V., Malyavin F.F., Vakalov D.S., Lapin V.A., Kuleshov D.S. Novel synthesis of low-agglomerated YAG:Yb ceramic nanopowders by two-stage precipitation with the use of hexamine. Ceramics International, 2019, vol. 45, no. 1, pp. 1273–1282. doi: 10.1016/j.ceramint.2018.10.010
6. Li J., Li J., Chen Q., Wu W., Xiao D., Zhu J. Effect of ammonium sulfate on the monodispersed Y3Al5O12 nanopowders synthesized by co-precipitant method. Powder Technology, 2012, vol. 218, pp. 46–50. doi: 10.1016/j.powtec.2011.11.033
7. Tomaszewski H., Wajler A., Weglarz H., Sidorowicz A., Brykała U., Jach K. Effect of ammonium sulfate on morphology of Y2O3 nanopowders obtained by precipitation and its impact on the transparency of YAG ceramics. Advances in Science and Technology, 2014, vol. 87, pp. 67–72. doi: 10.4028/www.scientific.net/AST.87.67
8. Ji C., Ji L., Lian L., Shen L., Zhang X., Wang Y., Gupta A. Low- temperature solution synthesis and characterization of Ce-doped YAG nanoparticles. Journal of Rare Earths, 2015, vol. 33, no. 6, pp. 591–598. doi: 10.1016/S1002-0721(14)60458-0
9. Li S., Liu B., Li J., Zhu X., Liu W., Pan Y., Guo J. Synthesis of yttria nano-powders by the precipitation method: The influence of ammonium hydrogen carbonate to metal ions molar ratio and ammonium sulfate addition. Journal of Alloys and Compounds, 2016, vol. 678, pp. 258–266. doi: 10.1016/j.jallcom.2016.03.072
10. Zhou T., Zhang L., Li Z., Wei S., Wu J., Wang L., Yang H., Fu Z., Chen H., Tang D., Wong C., Zhang Q. Toward vacuum sintering of YAG transparent ceramic using divalent dopant as sintering aids: Investigation of microstructural evolution and optical property. Ceramics International, 2017, vol. 43, no. 3, pp. 3140–3146. doi: 10.1016/j.ceramint.2016.11.131
11. Malyavin F.F., Tarala V.A., Kuznetsov S.V., Kravtsov A.A., Chikulina I.S., Shama M.S., Medyanik E.V., Ziryanov V.S., Evtushenko E.A., Vakalov D.S., Lapin V.A., Kuleshov D.S., Tarala L.V., Mitrofanenko L.M. Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics. Ceramics International, 2019, vol. 45, no. 15, pp. 4418–4423. doi: 10.1016/j.ceramint.2018.11.119
12. Liu Y., Qin X., Xin H., Song C. Synthesis of nanostructured Nd: Y2O3 powders by carbonate-precipitation process for Nd:YAG ceramics. Journal of European Ceramic Society, 2013, vol. 33, no. 13-14, pp. 2625–2631. doi: 10.1016/j.jeurceramsoc.2013.04.029
13. Tewari A., Nabiei F., Cantoni M., Bowen P., Hebert C. Segregation of anion (Cl–) impurities at transparent polycrystalline α-alumina interfaces. Journal of European Ceramic Society, 2014, vol. 34, no. 12, pp. 3037–3045. doi: 10.1016/j.jeurceramsoc.2014.04.018
14. Tsvet M.S. Chromatographic Adsorption Analysis. Moscow, Leningrad, AS USSR Publ., 1946, 272 p. (in Russian)
15. Lv Y., Zhang W., Liu H., Sang Y., Qin H., Tan J., Tong L. Synthesis of nano-sized and highly sinterable Nd:YAG powders by the urea homogeneous precipitation method. Powder Technology, 2012, vol. 217, pp. 140–147. doi: 10.1016/j.powtec.2011.10.020
16. Zhurba E.V., Lemeshev D.O., Popova N.A. The precursor of MGAl2O4 spinel obtained by reverse heterophase corpecipitation for transparent ceramic. Journal Adnvances in Chemistry and Chemical Technology, 2016, vol. 30, no. 7, pp. 39–40. (in Russian)
17. Ivanov M.G., Kopylov Y.L., Kravchenko V.B., Lopukhin K.V., Shemet V.V. YAG and Y2O3 laser ceramics from nonagglomerated nanopowders. Inorganic Materials, 2014, vol. 50, no. 9, pp. 951–959. doi: 10.1134/S0020168514090040
18. Osipov V.V., Shitov V.A., Lukyashin K.E., Maksimov R.N., Ishchenko A.V., Platonov V. V. Ce:YAG transparent ceramics based on nanopowders produced by laser ablation method: Fabrication, optical and scintillation properties. Nanosystems: Physics, Chemistry, Mathematics, 2017, vol. 8, no. 3, pp. 351– 359. doi: 10.17586/2220-8054-2017-8-3-351-359
19. Yang H., Zhang L., Luo D., Qiao X., Zhang J., Zhao T., Tang D., Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics. Optical Materials Express, 2015, vol. 5, no. 1, pp. 711–714. doi: 10.1364/OME.5.000142
 


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика