doi: 10.17586/2226-1494-2019-19-4-630-640


SYNTHESIS OF LOW-AGGLOMERATED YAG:Yb NANOPOWDERS FOR TRANSPARENT CERAMICS BY METHOD OF REVERSE CO-PRECIPITATION FROM CHLORIDE SALTS

M. S. Nikova, I. S. Chikulina, A. A. Kravtsov, V. A. Tarala, F. F. Malyavin, E. A. Evtushenko, L. V. Tarala, D. S. Vakalov, D. S. Kuleshov, V. A. Lapin, E. V. Medyanik, V. S. Zyryanov


Read the full article  ';
Article in Russian

For citation:
Nikova M.S., Chikulina I.S., Kravtsov A.A., Tarala V.A., Malyavin F.F., Evtushenko E.A., Tarala L.V., Vakalov D.S., Kuleshov D.S., Lapin V.A., Medyanik E.V., Zyryanov V.S. Synthesis of low-agglomerated YAG:Yb nanopowders for transparent ceramics by method of reverse co-precipitation from chloride salts. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 4, pp. 630–640 (in Russian).
doi: 10.17586/2226-1494-2019-19-4-630-640


Abstract
Subject of Research. The paper considers effect of ammonium sulfate, introduced at various stages of ceramic powders production, on the impurity content, morphology and degree of agglomeration of oxyhydrate powders and ceramic powders. Method. Synthesis of precursor powders was carried out by the method of reverse heterophase precipitation from chloride salts by spraying. Synchronous thermal analysis of oxyhydrate powders was carried out using differential scanning calorimetry and thermogravimetry. The content of chlorine and sulfur impurities in oxyhydrate and ceramic powders was determined by the method of energy dispersive analysis of the elemental composition. Morphology of the experimental samples was evaluated by scanning electron microscopy. Determination of the agglomeration degree for ceramic powders was carried out by the methods of X-ray phase analysis and gas adsorption of Brunauer, Emmett and Teller. Main Results. The research has shown positive effect of the ammonium sulfate usage at several stages of the ceramic powder production at once (chemical co-precipitation, washing, disaggregation). By applying an improved synthesis method, low-agglomerated (degree of agglomeration is less than 10) nanopowders with a specific surface area of 12.4 m2/g were obtained. Practical Relevance. Optical ceramics samples with the light transmission in the visible and near-IR range of more than 80% without taking into account the absorption bands of ytterbium were obtained.

Keywords: garnet, reverse co-precipitation, surfactant, impurity content, ceramic powders, YAG:Yb nanopowders, specific surface area, agglomeration degree, transparent ceramics, optical ceramics

Acknowledgements. This study was carried out with the support of the Advanced Research Foundation, contract No. 6/023/2014-2017 dated December 15, 2014. The group of authors would like to thank N.A. Popova and Professor E.S. Lukin (D. Mendeleev University of Chemical Technology of Russia) for their help in scientific capacity-building on the subject of YAG-based manufacturing of nanopowders for optically transparent ceramics by spraying.

References
  1. Sanghera J., Kim W., Villalobos G., Shaw B., Baker C., Frantz J., Sadowski B., Aggarwal I. Ceramic laser materials. Materials, 2012, vol. 5, no. 12, pp. 258–277. doi: 10.3390/ma5020258
  2. Zhang W., Lu T.C., Wei N., Shi Y.L., Ma B.Y., Luo H., Zhang Z.B., Deng J., Guan Z.G., Zhang H.R., Li C.N., Niu R.H. Co-precipitation synthesis and vacuum sintering of Nd:YAG powders for transparent ceramics. Materials Research Bulletin, 2015, vol. 70, pp. 365–372. doi:10.1016/j.materresbull.2015.04.063
  3. Matsushita N., Tsuchiya N., Nakatsuka K., Yanagitani T., Precipitation and calcinations process for yttrium aluminium garnet precursors synthesized by the urea method. Journal of the American Ceramic Society, 1999, vol. 82, no. 8, pp. 1977–1984. doi: 10.1111/j.1151-2916.1999.tb02029.x
  4. Kravtsov A.A., Chikulina I.S., Tarala V.A., Evtushenko E.A., Shama M.S., Tarala L.V., Malyavin F.F., Vakalov D.S., Lapin V.A., Kuleshov D.S. Novel synthesis of low-agglomerated YAG:Yb ceramic nanopowders by two-stage precipitation with the use of hexamine. Ceramics International, 2019, vol. 45, no. 1, pp. 1273–1282. doi:10.1016/j.ceramint.2018.10.010
  5. Zhang L., Li Z., Zhen F., Wang L., Zhang Q., Sun R., Selim F.A., Wong C., Chen H. High sinterability nano-Y2O3powders prepared via decomposition of hydroxyl-carbonate precursors for transparent ceramics. Journal of Materials Science, 2017, vol. 52, no. 14, pp. 8556–8567. doi:10.1007/s10853-017-1071-0
  6. Li J., Sun X., Liu S., Li X., Li J.G., Huo D. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics. Ceramics International, 2015, vol. 41, no. 2, pp. 3283–3287. doi:10.1016/j.ceramint.2014.10.076
  7. Li S., Liu B., Li J., Zhu X., Liu W., Pan Y., Guo J. Synthesis of yttria nano-powders by the precipitation method: the influence of ammonium hydrogen carbonate to metal ions molar ratio and ammonium sulfate addition. Journal of Alloys and Compounds, 2016, vol. 678, pp. 258–266. doi: 10.1016/j.jallcom.2016.03.072
  8. Li J., Liu W., Jiang B., Zhou J., Zhang W., Wang L., Shen Y., Pan Y., Guo J. Synthesis of nanocrystalline yttria powder and fabrication of Cr,Nd:YAG transparent ceramics. Journal of Alloys and Compounds, 2012, vol. 515, pp. 49–56. doi: 10.1016/j.jallcom.2011.10.083
  9. Qin H., Liu H., Sang Y., Lv Y., Zhang X., Zhang Y., Ohachi T., Wang J. Ammonium sulfate regulation of morphology of Nd:Y2O3 precursor via urea precipitation method and its effect on the sintering properties of Nd:Y2O3 nanopowders. Cryst Eng Comm, 2012, vol. 14, no. 5, pp. 1783–1789. doi:10.1039/c1ce06230a
  10. Vovk E.A., Deineka T.G., Doroshenko A.G., Tkachenko V.F., Tolmachev A.V., Yakovetskii R.P., PetrushaI.A., Tkach V.N., Turkevich V.Z., Danilenko N.I. ProductionoftheY3Al5O12 transparent nanostructured ceramics. Journal of Superhard Materials, 2009, vol. 31, no. 4, pp. 252–259. doi: 10.3103/S1063457609040066
  11. Tewari A., Nabiei F., Cantoni M., Bowen P., Hebert C. Segregation of anion (Cl-) impurities at transparent polycrystalline α-alumina interfaces. Journal of the European Ceramic Society,2014,vol. 34, no. 12, pp. 3037–3045. doi:10.1016/j.jeurceramsoc.2014.04.018
  12. Malyavin F.F., Tarala V.A., Kuznetsov S.V., Kravtsov A.A., Chikulina I.S., Shama M.S., Medyanik E.V., Ziryanov V.S., Evtushenko E.A., Vakalov D.S., Lapin V.A., Kuleshov D.S., Tarala L.V., Mitrofanenko L.M. Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics. Ceramics International,2019,vol. 45, no. 14, pp. 4418–4423. doi:10.1016/j.ceramint.2018.11.119
  13. Letov A.V., Popova N.A., Lukin E.S. Influence of concentration of oxide scandium and temperature synthesis for solid solution in the system Al2O3 – Sc2O3­­. Uspekhi v Khimii i Khimicheskoi Tekhnologii, 2016, vol. 30, no. 7, pp. 61–62.(in Russian)
  14. Lukin E.S., Makarov N.A., Popova N.A., Lemeshev D.O. Transparent ceramic material and method for its production. Patent RU2473514 C2, 2013.
  15. Liu Y., Qin X., Xin H., Song C. Synthesis of nanostructured Nd:Y2O3 powders by carbonate-precipitation process for Nd:YAG ceramics. Journal of the European Ceramic Society,2013,vol. 33,no. 13-14, pp. 2625–2631. doi:10.1016/j.jeurceramsoc.2013.04.029
  16. Tsvet M.S.Chromatographic Adsorption Analysis. Moscow, Leningrad, AS USSR Publ., 1946, 272 p. (in Russian)
  17. Nikova M.S., Kravtsov A.A., Chikulina I.S., Malyavin F.F., Tarala V.A., Vakalov D.S., Kuleshov D.S., Tarala L.V., Evtu shenko E.A., Lapin V.A. Ammonium sulphate effect on characteristics of YAG:Yb nanopowders and optical ceramics. Scientific and Technical Journal ofInformation Technologies, Mechanics and Optics, 2019, vol. 19, no. 3, pp. 443–450 (in Russian). doi: 10.17586/2226-1494-2019-19-3-443-450
  18. Tarala V.A., Shama M.S., Chikulina I.S., Kouznetsov S.V., Malyavin F.F., Vakalov D.S., Kravtsov A.A., Pankov M.A., Estimation of Sc3+solubility in dodecahedral and octahedral sites in YSAG:Yb. Journal of the American Ceramic Society,2019,vol. 102, no. 8, pp. 4862–4873. doi: 10.1111/jace.16294


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика