doi: 10.17586/2226-1494-2019-19-4-657-672


DIGITIZATION DEVELOPMENT DIRECTIONS OF NATIONAL AND FOREIGN ENERGY SYSTEMS

A. E. Mozokhin, V. N. Shvedenko


Read the full article  ';
Article in Russian

For citation:

Mozokhin A.E., Shvedenko V.N. Digitization development directions of national and foreign energy systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 4, pp. 657–672 (in Russian). doi: 10.17586/2226-1494-2019-19-4-657-672



Abstract

Subject of Research. The paper presents analysis of the key areas for development of digital energy and smart grids at the current moment and for the next 10 years. We perform a review of modern software and hardware solutions for the implementation of managing integrated information systems for transmission and distribution of electrical power in Russia and throughout the world. We make a survey of international trends in the digitization of power grids and energy markets. The experience of integration of intelligent digital solutions on the sites of large power grid companies is analyzed. The expert evaluation is carried out considering implementation results of integrated information management systems at the facilities of the Unified Energy System of Russia. Method. Comparative analysis of the digitization concepts for national and foreign power grid companies made it possible to identify potential points of growth for the Russian energy sector over the future of 5–10 years. Financial analysis of dynamics investments in the infrastructure of industrial Internet of things on the global and Russian markets points to an increase in the integration of digital technologies not only in the energy sector, but also in health care, mining, industrial production and agriculture. An expert evaluation of pilot operation results for digital energy projects in different countries of the world expands the range of technological innovations in the power industry. Main Results. The ecosystems from suppliers of packet products for digital energy from different countries of the world are compared in the context of the proposed solutions in the areas of digital platforms, analytical services, geolocation systems, transport monitoring, and telemetry. Comparative functionality analysis of digital platforms for smart energy of the largest world and national high-tech companies is made. Practical Relevance. The experience of applying digital transformation technologies for the tasks of power grid companies is structured. The readiness level of power grid enterprises is evaluated for the implementation of digital energy projects in Russia currently and for the next 3 years. The performed analysis points to a greater openness of energy companies to new technologies of the industrial Internet of things against the background of national economy digitization up trend. The growth of interest in packaged solutions and Russian-designed software products is noted.


Keywords: information platform, Internet of energy, integrated information system in energy sector, digital transformation, intelligent data processing

References
  1. Challenges of the Electric Grid Complex and Ways to Overcome Them. Strategic session of IDGC of Center, PJSC and IDGC of Center and Volga Region, PJSC, 2018, 19 p. (in Russian)
  2. RauN.S., Tayor B. A central inventory of storage and other technologies to defer distribution upgrades-optimization and economics. IEEE Transactions on Power Delivery, 1998, vol. 13, no. 1, pp. 194–202. doi: 10.1109/61.660878
  3. Subudhi S., Agarwal P., Ghose T. A multistage concept for distribution system planning. Proc. 1st Int. Conf. on Automation, Control, Energy and Systems, 2014. doi: 10.1109/ACES.2014.6808024
  4. MudialbaP.J. The impact of cloud technology on the automation of businesses. Proc. Int. Conf. on Platform Technology and Service, 2016. doi: 10.1109/PlatCon.2016.7456831
  5. Masera M., Bompard E.F., Profumo F., Hadjsaid N. Smart (electricity) grids for smart cities: assessing roles and societal impacts. Proceedings of the IEEE, 2018, vol. 106, no. 4, pp. 613–625. doi: 10.1109/JPROC.2018.2812212
  6. Luan W., Peng J., Maras M., Lo J., Harapnuk B. Smart meter data analytics for distribution network connectivity verification. IEEE Transactions on Smart Grid, 2015, vol. 6, no. 4, pp. 1964–1971. doi: 10.1109/TSG.2015.2421304
  7. Cheng Z., Duan J., Chow M.Y. To centralize or to distribute: that is the question: a comparison of advanced microgrid management systems. IEEE Industrial Electronics Magazine, 2018, vol. 12, no. 1, pp. 6–24. doi:10.1109/MIE.2018.2789926
  8. Du Y., Tu H., Lukic S., Lubkeman D., Dubey A., Karsai G. Development of a controller hardware-in-the-loop platform for microgrid distributed control applications. IEEE Electronic Power Grid, 2018. doi: 10.1109/eGRID.2018.8598696
  9. Zhao C., Chen J., He J., Cheng P. Privacy-preserving consensus-based energy management in Smart Grids. IEEE Transactions on Signal Processing, 2018, vol. 66, no. 23, pp. 6162–6176. doi: 10.1109/TSP.2018.2872817
  10. Wang K., Hu X., Li H. et al. A survey on energy Internet communications for sustainability. IEEE Transactions on Sustainable Computing, 2017, vol. 2, no. 3, pp. 231–254. doi: 10.1109/TSUSC.2017.2707122
  11. Digital Transition in the Power Industry of Russia. Moscow, Center for Strategic Research, 2017, 47 p. Available at: https://csr.ru/wp-content/uploads/2017/09/Doklad_energetika-Web.pdf (accessed: 25.05.2019).
  12. Alahakoon D., Yu X. Smart electricity meter data intelligence for future energy systems: a survey. IEEE Transactions on Industrial Informatics, 2016,vol. 12,no. 1,pp. 425–436. doi: 10.1109/TII.2015.2414355
  13. PhilipB.V., AlpcanT., JinJ., PalaniswamiM. Distributed real-timeIo T for autonomous vehicles. IEEE Transaction son Industrial Informatics, 2019, vol. 15, no. 2, pp. 1131–1140. doi: 10.1109/TII.2018.2877217
  14. Porumb R., Gheorghe S., Darie G., Boboc T. Analysis of power quality issues raised by PV generation and e-parking storage capacities in UPB smart grid environment. Proc. 10th Int. Symposium on Advanced Topics in Electrical Engineering, ATEE, 2017, pp. 802–807. doi: 10.1109/ATEE.2017.7905113
  15. Nimbargi S., Mhaisne S., Nangare S., Sinha M. Review on AMI technology for Smart Meter. Proc. Int. Conf. on Advances in Electronics Communication and Computer Technology, ICAECCT, 2016, pp. 21–27. doi: 10.1109/ICAECCT.2016.7942549
  16. Jing X., Tang P. Research and design of the intelligent inventory management system based on RFID. Proc. 6th Int. Symposium on Computational Intelligence and Design, ISCID, 2013. doi: 10.1109/ISCID.2013.117
  17. Vergazov S.Yu., Kirilenkov V.S.Technical solutions for relay protection and automation offered by PJSC ROSSETI as part of the creation of Digital Substations,2018, 9 p. Available at: http://digital substation.com/wp-content/uploads/2018/04/3.-Rosseti.pdf (accessed: 25.05.2019).
  18. Mozokhin A.E., Drozdov V.G., Staroverov B.A. Energy of the New Way (EnergyNet): Designing of Intelligent Digital Systems at Electric Substations. Kostroma, Kostroma State University, 2018, 67 p. (in Russian)
  19. Mozokhin A.E., Drozdov V.G., Salikova E.V. Systems for Collecting, Transmitting and Displaying Information in Distribution Grid Companies: A Workshop. Kostroma, Kostroma Stat eUniversity,2017, 56 p. (inRussian)
  20. Khokhlov A., Mel'nikov Yu., Veselov F., Kholkin D., Datsko K. Distributed Energy in Russia: Development Potential, 2018, 87 p. Available at: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_DER-3.0_2018.02.01.pdf (accessed: 25.05.2019).
  21. Duan Y., Li W., Zhong Y., Fu X. A multi-network control framework based on industrial internet of things. Proc. IEEE 13th Int. Conf. on Networking Sensing and Control,ICNSC, 2016.doi: 10.1109/ICNSC.2016.7479021
  22. Jayaram A.. An IIoT quality global enterprise inventory management model for automation and demand forecasting based on cloud. Proc. Int. Conf. on Computing, Communication and Automation, ICCCA. Greater Noida, India, 2017, pp. 1258–1263. doi: 10.1109/CCAA.2017.8230011
  23. Wan J., Tang S., Shu Z., Li D., Wang S., Imran M., Vasilakos A.V. Software-defined industrial Internet of Things in the context of Industry 4.0. IEEE Sensors Journal, 2016, vol. 16, pp. 7373–7380.doi: 10.1109/JSEN.2016.2565621
  24. Gonçalves P., Ferreira J., Pedreiras P., Corujo D. Adapting SDN datacenters to support Cloud IIoT applications. Proc. IEEE 20th Conference on Emerging Technologies Factory Automation, ETFA, 2015. doi: 10.1109/ETFA.2015.7301641
  25. Al-Janabi S., Al-Shourbaji I., Shojafar M., Abdelhag M. Mobile cloud computing: challenges and future research directions. Proc. 10th Int. Conf. on Developments in eSystems Engineering. Paris, 2017, pp. 62–67. doi: 10.1109/DeSE.2017.21
  26. Bahrami M., Singhal M. DCCSOA: a dynamic cloud computing service-oriented architecture. Proc. IEEE Int. Conf. on Information Reuse and Integration. San Francisco, USA, 2015, pp. 158–165. doi: 10.1109/IRI.2015.33
  27. Mozokhin A.E. Digital platforms of intellectual services. Proc. Scientific and Technical Conference of Young Specialists RELAVEXPO. Cheboksary, 2019, pp. 240–245.
  28. Mazohin A.E. Technical accounting - expanding horizons. Electric Power, 2018, no. s2, pp. 9–13. (in Russian)
  29. Bahrami M. Cloud computing for emerging mobile cloud apps. Proc. 3rd IEEE Int. Conf. on Mobile Cloud Computing Services and Engineering, 2015. doi: 10.1109/MobileCloud.2015.40
  30. Moreno-Vozmediano R. et al. Key challenges in cloud computing: enabling the future internet of services. IEEE Internet Computing, 2013, vol. 17, no. 4, pp. 18–25. doi: 10.1109/MIC.2012.69
  31. Baek J., Vur Q.H., LiuJ.K.,HuangX.,XiangY. A secure cloud computing based framework for big data information management of Smart Grid. IEEE Transactions on Cloud Computing, 2014, vol. 3, no. 2, pp. 233–244. doi: 10.1109/TCC.2014.2359460
  32. Islam T.,Hashem M.M.A.A big data management system for providing real time services using fog infrastructure. Proc. IEEE Symposium on Computer Applications & Industrial Electronics. Penang, Malaysia, 2018. doi: 10.1109/ISCAIE.2018.8405449
  33. Muthusamy V., Slominski A., Ishakian V. Towards enterprise-ready AI deployments minimizing the risk of consuming AI models in business applications. Proc. 1st Int. Conf. on Artificial Intelligence for Industries. Laguna Hills, USA,2018.doi: 10.1109/AI4I.2018.8665685
  34. Industrial Internet of Things in Russia. 2018. Available at: https://fastsalttimes.com/sections/obzor/1875.html (accessed: 25.05.2019).
  35. Semenovskaya E. Industrial Internet of Things. Possibility of the Russian Market. 2016. 15 p. Available at: https://www.company.rt.ru/projects/IIoT/study_IDC.pdf (accessed: 25.05.2019).
  36. Communications Billing and Revenue Management MAA on Oracle Engineered Systems. 2017. 57 p. Available at: https://www.oracle.com/technetwork/database/availability/brm-maa-2217121.pdf (accessed: 25.05.2019).
  37. System SE ADMS – Schneider Electric Solution for Managing Distribution Networks. 2017. 36 p. Available at: www.бэсп.бел/docs/news/Obzor-reshenia-ADMS-ot-shneider-electric-final.pdf (accessed: 25.05.2019).


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика