doi: 10.17586/2226-1494-2019-19-5-775-782


TUNABLE TERAHERTZ FILTERS BASED ON CARBON NANOTUBES

D. A. Gomon, V. Y. Soboleva, P. S. Demchenko, E. A. Litvinov, E. B. Sheklanova, M. K. Khodzitskiy


Read the full article  ';
Article in Russian

For citation:

Gomon D.A.,Soboleva V. Yu.,Demchenko P. S., Litvinov E.A.,Sheklanova E.B.,Khodzitsky M.K.Tunable terahertz filters based on carbon nanotubes. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 5, pp. 775–782 (in Russian). doi: 10.17586/2226-1494-2019-19-5-775-782



Abstract
Subject of Research. The paper presents the study of optically tunable terahertz filter based on cross resonators coated with a layer of carbon nanotubes (CNT). We show experimentally control capability of the optical spectral characteristics of terahertz devices coated with a layer of single-wall carbon nanotubes. Method. The empirical formulas were used for calculation of the geometrical parameters of a cross-shaped resonator for a given resonant frequency and filter Q-factor. Experimental samples of the notch filter were made by laser engraving. A layer of carbon nanotubes, which were synthesized by aerosol chemical deposition, was deposited on an experimental filter sample. Experimental transmission spectra of an “empty” filter, a filter with a carbon nanotubes layer without pumping, and an optically pumped carbon nanotubes layer filter at a wavelength of 980 nm were measured by terahertz time-domain spectroscopy. Main Results. We have shown by experiments that optical pumping of a filter with carbon nanotubes layer leads to a decrease in the transmittance of the main resonance peak and a shift towards higher frequencies of the side resonance peak. Practical Relevance. Filters coated with carbon nanotubes layer can be used as inexpensive and compact tunable components for terahertz photonics devices

Keywords: terahertz radiation, terahertz filters, metamaterials, carbon nanotubes, cross-shaped resonators, terahertz pulse spectroscopy

References
  1. Borovkova M., Khodzitsky M., Demchenko P., Cherkasova O., Popov A., Meglinski I. Terahertz time-domain spectroscopy for non-invasive assessment of water contentin biological samples. Biomedical optics express, 2018, vol. 9, no. 5, pp. 2266–2276. doi: 10.1364/BOE.9.002266
  2. Kemp M.C., Taday P.F., Cole B.E., Cluff J.A., Fitzgerald A.J., Tribe W.R. Security applications of terahertz technology. Proceedings of SPIE, 2003, vol. 5070, pp. 44–52. doi: 10.1117/12.500491
  3. Ahi K., Shahbazmohamadi S., Asadizanjani N. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Optics and Lasers in Engineering, 2018, vol. 104, pp. 274–284. doi: 10.1016/j.optlaseng.2017.07.007
  4. Nagatsuma T.,Ducournau G.,Renaud C.C.Advance sinterahertz communications accelerated by photonics. Nature Photonics, 2016,vol.10,no.6,pp.371–379.doi:10.1038/nphoton.2016.65
  5. Soboleva V.Y., Gomon D.A., Sedykh E.A., Balya V.K., Khodzitskiǐ M.K.Development of narrow band pas sfilters based on cross cavities for the terahertz frequency range. Journal of Optical Technology, 2017, vol. 84, no. 8, pp. 521–524. doi: 10.1364/JOT.84.000521
  6. Gomon D.,Sedykh E.,Rodríguez S.,IdelfonsoT.M., Zaitsev K., Vozianova A., Khodzitsky M. Influence of the geometric pa- rameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications. Chinese Optics, 2018, vol. 11, no. 1, pp. 47–59. doi: 10.3788/CO.20181101.0047
  7. Grebenchukov A.N., Zaitsev A.D., Khodzitsky M.K. Optically controlled narrowband terahertz switcher based on graphene. Chinese Optics, 2018, vol. 11, no. 2, pp. 166–173. doi: 10.3788/CO.20181102.0166
  8. Chen H.T., O’Hara J.F., Azad A.K., Taylor A.J., Averitt R.D., Shrekenhamer D.B., Padilla W.J. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics, 2008, vol. 2, no. 5, pp. 295–298. doi: 10.1038/nphoton.2008.52
  9. Manceau J.M., Shen N.H., Kafesaki M., Soukoulis C.M., Tzortzakis S. Dynamic response of metamaterials in the terahertz regime: Blueshift tunability and broadband phase modulation. Applied Physics Letters, 2010, vol. 96, no. 2, pp. 021111. doi: 10.1063/1.3292208
  10. Liu M.,Yin X.,Ulin-Avila E.,Geng B.,Zentgraf T.,Ju L.,Wang F., Zhang X. A graphene-based broadband optical modulator. Nature, 2011, vol. 474, no. 7349, pp. 64–67. doi:10.1038/nature10067
  11. Fan F., Gu W.-H., Chen S., Wang X.H., Chang S.J. State con- version based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping. Optics letters, 2013, vol. 38, no. 9, pp. 1582–1584. doi: 10.1364/OL.38.001582
  12. Soboleva V. Yu.,Gusev S.I.,Khodzitsky M.K. Metafilm-based bio- sensor for determination o fglucose concentration inhumanblood. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 3, pp. 337–383. (in Russian). doi:10.17586/2226-1494-2018-18-3-377-383
  13. Soboleva V. Yu. Designing of a highly sensitive sensor based on the metasurface for determining the concentration of glucose in human blood: diploma job. St. Petersburg, ITMO University, 2018. (in Russian)
  14. Ferraro A., Zografopoulos D.C., Caputo R., Beccherelli R. Broad and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patternedon Thin Low-Loss Polymer Substrates.IEEE Journal of Selected Topic sin Quantum Electronics, 2017,vol.23, no. 4, pp. 8501308. doi:10.1109/JSTQE.2017.2665641
  15. Moisala A., Nasibulin A.G., Brown D.P., Jiang H., Khriachtchev L., Kauppinen E.I. Single-walled carbon nano- tube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chemical Engineering Science, 2006, vol. 61, no. 13, pp. 4393–4402. doi: 10.1016/j.ces.2006.02.020
  16. Medina F., Mesa F., Marques R. Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 12, pp. 3108–3120. doi: 10.1109/TMTT.2008.2007343


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика