doi: 10.17586/2226-1494-2019-19-5-818-824


ROTATION PARAMETER ESTIMATION ERROR OF DEFLECTOMETER BASIC UNIT

A. P. Hoang, A. A. Gorbatchev, I. A. Konyakhin, M. H. Tong


Read the full article  ';
Article in Russian

For citation:
Hoang Anh Phuong, Gorbachev A.A., Konyakhin I.A., Tong Minh Hoa. Rotation parameter estimation error of deflectometer basic unit. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 5, pp. 818–824 (in Russian). doi: 10.17586/2226-1494-2019-19-5-818-824


Abstract
Subject of Research. The paper proposes a method for determining the rotation parameters of the basic unit of an optical- electronic deflectometer, having an effect on the deflection measurement error of large-scale objects such as a floating dock. Method. We proposed an algorithm and mathematical model structure for the effect of the image coordinate estimation error of the collimating mark on the rotation parameter estimation error of the deflectometer basic unit with the use of the elements of vector algebra and matrix analysis. Main Results. We have proved that the rotation parameters of the basic unit can be determined as a result of solution of nonlinear equation systems based on the Levenberg–Marquardt optimization algorithm. Studies on a mathematical model have given the possibility to estimate the effect of the image coordinate estimation error of the collimating mark on the rotation parameter estimation error of the basic unit. Practical Relevance. The results of this work will enable us to develop an algorithm for compensation of the basic unit rotation parameters due to the effect of external factors and, as a result, to reduce the error in determining the spatial coordinates of the controlled object (deflection of the floating dock).

Keywords: rotation parameters, optical-electronic deflectometer, basic unit, vector algebra, matrix analysis, measurement error

References
1. Gaythwaite J.W. Design of marine facilities for the berthing, mooring, and repair of vessels. American Society of Civil Engineers, 2004, 531 p.
2. Ganshin V.N., Storozhenko A.F., Ilyin A.G. et al. Measurement of vertical displacements of structures and stability analysis of benchmarks. Moscow, Nedra, 1981, 215 p. (in Russian)
3. Smirnov A.G. Analysis of causes of floating docks accidents.Sudostroenie, 2001, no. 3, pp. 45–47. (in Russian)
4. Antonenko S.V., Linnik E.V., Golobokova N.Yu. Maintenance of operational reliability of floating docks. Marine intellectual technologies, 2013, no. S2, pp. 4–8. (in Russian)
5. Froggatt M., Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Applied Optics, 1998, vol. 37, no. 10, pp. 1735–1740. doi: 10.1364/AO.37.001735
6. Korotaev V.V., Pantiushin A.V., Serikova M.G., Anisimov A.G. Deflection measuring system for floating dry docks. Ocean Engineering, 2016, vol. 117, pp. 39–44. doi: 10.1016/j.oceaneng.2016.03.012
7. Zou L., Bao X., Yang S., Chen L., Ravet F. Effect of Brillouin slow light on distributed Brillouin fiber sensors. Optics letters, 2006, vol. 31, no. 18, pp. 2698–2700. doi: 10.1364/OL.31.002698
8. Lynch J.P., Wang Y., Loh K.J., Yi J.-H., Yun C.-B. Performance mon- itoring of the Geumdang Bridge using a dense network of high-res- olution wireless sensors. Smart Materials and Structures, 2006, vol. 15, no. 6, pp. 1561–1575.
doi: 10.1088/0964-1726/15/6/008
9. Yang G., Liang H., Wu C. Deflection and inclination measuring system for floating dock based on wireless net- works. Ocean engineering, 2013, vol. 69, pp. 1–8. doi: 10.1016/j.oceaneng.2013.05.014
10. Stiros S.C., Psimoulis P.A. Response of a historical short-span railway bridge to passing trains: 3-D deflections and dominant frequencies derived from Robotic Total Station (RTS) measurements. Engineering Structures, 2012, vol. 45, pp. 362–371. doi: 10.1016/j.engstruct.2012.06.029
11. Carbonari S., Gara F., Roia D., Leoni G., Dezi L. Tests on two 18-years-old prestressed thin walled roof elements. Engineering Structures, 2013, vol. 49, pp. 936–946. doi: 10.1016/j.engstruct.2012.12.037
12. Newman T.S., Jain A.K. A survey of automated visual inspection. Computer vision and image understanding, 1995, vol. 61, no. 2, pp. 231–262. doi: 10.1006/cviu.1995.1017
13. Korotaev V.V., Timofeev A.N., Ivanov A.G. Problems in the development of optoelectronic systems for monitoring displacements of large-sized objects. Journal of Optical Technology, 2000, vol. 67, no. 4, pp. 336–339. doi: 10.1364/JOT.67.000336
14. Gorbachev A.A., Konyakhin I.A., Musyakov V.L., Timofeev A.N. Study of the structural features of invariant optoelectronic systems with a unified matrix analysis field. Journal of Optical Technology, 2007, vol. 74, no. 12, pp. 810–814.
doi: 10.1364/JOT.74.000810
15. Rules for Classification and Construction. Floating Docks. Germanischer Lloyd Aktiengesellschaft, 1993.
16. Rules for Classification of Floating Docks, China Classification Society, 2009.
17. Rules for Building and Classing. Steel Floating Dry Docks. American Bureau of Shipping, 2009.
18. Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships, Part V Technical Supervision During Construction of Ships. Russian Maritime Register of Shipping, 2014.
19. Gorbachev A.A., Hoang A.P. Invariant electro-optical system for deflection measurement of floating docks. Proceedings of SPIE, 2017, vol. 10329, pp. 103294F. doi: 10.1117/12.2270653
20. Gorbachev A.A., Pantyushin A.V., Serikova M.G., Korotaev V.V., Timofeev A.N. System for deflection measurements of floating dry docks. Proceedings of SPIE, vol. 9525, pp. 95254C. doi: 10.1117/12.2184925
21. Handbook of the designer of optical-mechanical devices. Ed. by V.A. Panov. Leningrad, Mashinostroenie Publ., 1980, 742 p. (in Russian)
22. Pogarev G.V. Alignment of optical instruments. Leningrad, Mashinostroenie Publ., 1982, 237 p. (in Russian)
23. Gorbachev A.A. Invariance in optical schemes of optoelectronic deflection control systems. Scientific and Technical Bulletin of St. Petersburg State University of Information Technologies, Mechanics and Optics, 2006, vol. 6, no. 7(30), pp. 91–96. (in Russian)
24. Hoang A.P., Gorbachev A.A., Mikheev S.V., Kleshchenok M.A. Analysis of the effect of deflectometer base unit rotation on determination of image coordinates of reference elements. /Journal of Instrument Engineering, 2018, vol. 61, no. 9, pp. 805–813. (in Russian). doi: 10.17586/0021-3454-2018-61-9-805-813
25. Hoang A.P., Gorbachev A.A., Konyakhin I.A. Image displacement analysis for electro-optical system for deflection measurement of floating docks. Proceedings of SPIE, 2019, vol. 11053, pp. 110534A. doi: 10.1117/12.2512563
26. Kovács E. Rotation about an arbitrary axis and reflection through an arbitrary plane. Annales Mathematicae et Informaticae, 2012, no. 40, pp. 175–186.
27. Greym I.A. Mirror-prism systems. Moscow, Мashinostroenie Publ., 1981, 125 p. (in Russian)
28. Hoang V.P., Konyakhin I.A. Error analysis of object rotation parameters measurement with autocollimation method using computer models on the base of quaternions. Journal of Instrument Engineering, 2017, vol. 60, no. 12, pp. 1157–1160. (in Russian). doi: 10.17586/0021-3454-2017-60-12-1157-1160

 


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика