Menu
Publications
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief
Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2019-19-6-973-979
FIBER COUPLED LASER DIODE MODULE ALIGNMENT
Read the full article ';
Article in Russian
For citation:
Abstract
For citation:
Kotova E.I., Shulepov V.A., Aksarin S.M., Bugrov V.E. Fiber coupled laser diode module alignment. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 6, pp. 973–979 (in Russian). doi: 10.17586/2226-1494-2019-19-6-973-979
Abstract
Subject of Research. The paper presents the results of the laser diode module optical system alignment, which includes three steps: the laser diode radiation collimation, the laser beams multiplexing from three sources and the radiation input into the optical fiber. The laser diode module optical system with a fiber output is realized as a stepped configuration of sources position with a height shift of laser diodes relative to each other by 1.6 mm. Semiconductor laser diodes with Fabry-Perot resonator and peak generation wavelength of 1020 nm are used as radiation sources. The core diameter of the output multimode quartz optical fiber is equal to 400 μm and the numerical aperture is NA 0.22. Method. The method of spatial multiplexing for laser beams from three laser diodes in a continuous-wave mode was implemented. The residual divergence and deviations control of the optical axes in each channel were carried out by measuring the laser beam profiles in two sections with the beam profile meter displaced strictly along the laser beams propagation axis by 100 mm. The radiation input efficiency into the optical fiber was determined by measuring the radiation power before entering the laser beam and at the output from the optical fiber. Main Results. The maximum output power of the laser diode module prototype is 19.65 W. The loss reduction is achieved owing to the application of anti-reflective coatings on the lenses and a highly reflective coating on the mirrors, taking into account the spectral composition of the radiation and the angle of incidence of the laser beams. Practical Relevance. The implemented assembly method can be used to manufacture higher output power laser diode modules, including more than three laser diodes without reduction in effectiveness. The developed micro-optical component positioning test bench allows for high-precision alignment of lenses and mirrors, and optical fiber coupling of optoelectronic devices.
Keywords: laser diode, collimation, adjustment, fiber coupling
References
References
- High-Power Diode Lasers Fundamentals, Technology, Applications/ Ed. by R. Diehl. Springer-Verlag, 2000, 422 p.
- Liu X., Zhao W., Xiong L., Liu H. Packaging of high power semiconductor lasers. Springer, 2015, 415 p.
- Sun H. A practical guide to Handling laser diode beams. Springer, 2015, 147 p.
- Wolf P., Köhler B., Rotter K., Hertsch S., Kissel H., Biesenbach J. High-power, high-brightness and low-weight fiber coupled diode laser device. Proceedings of SPIE, 2011, vol. 7918, pp. 79180O. doi: 10.1117/12.875147
- Kasai Y., Yamagata Y., Kaifuchi Y., Sakamoto A., Tanaka D.High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode.Proceedings of SPIE, 2017, vol. 10086, pp. 1008606. doi: 10.1117/12.2252122
- Dawson J.W., Messerly M.J., Beach R.J., Shverdin M.Y., Stappaerts E.A., Sridharan A.K., Pax P.H., Heebner J.E., Siders C.W., Barty C.P.J. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Optics Express, 2008, vol. 16, no. 17, pp. 13240–13266.doi: 10.1364/oe.16.013240
- Pelegrina-Bonilla G., Mitra T., Compensation of the laser diode smile by the use of micro-optics. Applied Optics, 2018, vol. 57, no. 13, pp. 3329–3333. doi: 10.1364/AO.57.003329
- Wetter N.U. Three-fold effective brightness increase of laser diode bar emission by assessment and correction of diode array curvature. Optics and Laser Technology, 2001, vol. 33, no. 3, pp. 181–187. doi: 10.1016/S0030-3992(01)00015-9
- Yu J., Guo L., Wu H., Wang Z., Gao S., Wu D. Optimization of beam transformation system for laser-diode bars. Optics Express, 2016, vol. 24, no. 17, pp. 19728–19735.doi:10.1364/OE.24.019728
- Köhler B., Brand T., Haag M., Biesenbach J. Wavelength stabilized high-power diode laser modules. Proceedings of SPIE, 2009, vol. 7198, pp. 719801. doi: 10.1117/12.809541
- Liu R., Jiang X., Yang T., He X., Gao Y., Zhu J., Zhang T., Guo W., Wang B., Guo Z., Zhang L., Chen L. High Brightness 9xxnm Fiber Coupled Diode Lasers. Proceedings of SPIE, 2015, vol. 9348, pp. 93480V. doi: 10.1117/12.2080506
- Hou L., Zhang H., Xu L., Li Y., Zou Y., Zhau X., Ma X. Design of high-brightness 976nm fiber-coupled laser diodes based on ZEMAX. Proceedings of SPIE, 2015, vol. 9521, pp. 95211F. doi: 10.1117/12.2177786
- Qi Y., Zhao P., Chen Q., Wu Y., Chen Y., Zou Y., Lin X. Design of 150W, 105-μm, 0.22NA, fiber coupled laser diode module by ZEMAX. Proceedings of SPIE, 2016, vol. 10152, pp. 101521H. doi: 10.1117/12.2247657
- Kotova E.I., Romanova G.E., Tsyganok H.A., Odnoblyudov M.A., Bougrov V.E. Efficiency analysis of optical schemes for the development of high power laser diode modules. Proceedings of SPIE, 2018, vol. 10695, pp. 106950T. doi: 10.1117/12.2313293
- Andryieuski A., Andryieuski V.F. Laser Diode Modules: Optical Coupling And Parts Bonding. Photonics, 2017, no. 3(63), pp. 74–79. (in Russian). doi: 10.22184/1993-7296.2017.63.3.74.79
- Werner M., Wessling C., Hengesbach S., Traub M., Hoffmann H.-D. 100 W / 100 µm passively cooled, fiber coupled diode laser at 976 nm based on multiple 100 µm single emitters. Proceedings of SPIE, 2009, vol. 7198, pp. 71980P. doi: 10.1117/12.810487