doi: 10.17586/2226-1494-2019-19-6-973-979


FIBER COUPLED LASER DIODE MODULE ALIGNMENT

E. I. Kotova, V. A. Shulepov, S. M. Aksarin, V. E. Bougrov


Read the full article  ';
Article in Russian

For citation:
Kotova E.I., Shulepov V.A., Aksarin S.M., Bugrov V.E. Fiber coupled laser diode module alignment. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 6, pp. 973–979 (in Russian). doi: 10.17586/2226-1494-2019-19-6-973-979


Abstract
Subject of Research. The paper presents the results of the laser diode module optical system alignment, which includes three steps: the laser diode radiation collimation, the laser beams multiplexing from three sources and the radiation input into the optical fiber. The laser diode module optical system with a fiber output is realized as a stepped configuration of sources position with a height shift of laser diodes relative to each other by 1.6 mm. Semiconductor laser diodes with Fabry-Perot resonator and peak generation wavelength of 1020 nm are used as radiation sources. The core diameter of the output multimode quartz optical fiber is equal to 400 μm and the numerical aperture is NA 0.22. Method. The method of spatial multiplexing for laser beams from three laser diodes in a continuous-wave mode was implemented. The residual divergence and deviations control of the optical axes in each channel were carried out by measuring the laser beam profiles in two sections with the beam profile meter displaced strictly along the laser beams propagation axis by 100 mm. The radiation input efficiency into the optical fiber was determined by measuring the radiation power before entering the laser beam and at the output from the optical fiber. Main  Results. The maximum output power of the laser diode module prototype is 19.65 W. The loss reduction is achieved owing to the application of anti-reflective coatings on the lenses and a highly reflective coating on the mirrors, taking into account the spectral composition of the radiation and the angle of incidence of the laser beams. Practical Relevance. The implemented assembly method can be used to manufacture higher output power laser diode modules, including more than three laser diodes without reduction in effectiveness. The developed micro-optical component positioning test bench allows for high-precision alignment of lenses and mirrors, and optical fiber coupling of optoelectronic devices.

Keywords: laser diode, collimation, adjustment, fiber coupling

References
  1. High-Power Diode Lasers Fundamentals, Technology, Applications/ Ed. by R. Diehl. Springer-Verlag, 2000, 422 p.
  2. Liu X., Zhao W., Xiong L., Liu H. Packaging of high power semiconductor lasers. Springer, 2015, 415 p.
  3. Sun H. A practical guide to Handling laser diode beams. Springer, 2015, 147 p.
  4. Wolf P., Köhler B., Rotter K., Hertsch S., Kissel H., Biesenbach J. High-power, high-brightness and low-weight fiber coupled diode laser device. Proceedings of SPIE, 2011, vol. 7918, pp. 79180O. doi: 10.1117/12.875147
  5. Kasai Y., Yamagata Y., Kaifuchi Y., Sakamoto A., Tanaka D.High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode.Proceedings of SPIE, 2017, vol. 10086, pp. 1008606. doi: 10.1117/12.2252122
  6. Dawson J.W., Messerly M.J., Beach R.J., Shverdin M.Y., Stappaerts E.A., Sridharan A.K., Pax P.H., Heebner J.E., Siders C.W., Barty C.P.J. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Optics Express, 2008, vol. 16, no. 17, pp. 13240–13266.doi: 10.1364/oe.16.013240
  7. Pelegrina-Bonilla G., Mitra T., Compensation of the laser diode smile by the use of micro-optics. Applied Optics, 2018, vol. 57, no. 13, pp. 3329–3333. doi: 10.1364/AO.57.003329
  8. Wetter N.U. Three-fold effective brightness increase of laser diode bar emission by assessment and correction of diode array curvature. Optics and Laser Technology, 2001, vol. 33, no. 3, pp. 181–187. doi: 10.1016/S0030-3992(01)00015-9
  9. Yu J., Guo L., Wu H., Wang Z., Gao S., Wu D. Optimization of beam transformation system for laser-diode bars. Optics Express, 2016, vol. 24, no. 17, pp. 19728–19735.doi:10.1364/OE.24.019728
  10. Köhler B., Brand T., Haag M., Biesenbach J. Wavelength stabilized high-power diode laser modules. Proceedings of SPIE, 2009, vol. 7198, pp. 719801. doi: 10.1117/12.809541
  11. Liu R., Jiang X., Yang T., He X., Gao Y., Zhu J., Zhang T., Guo W., Wang B., Guo Z., Zhang L., Chen L. High Brightness 9xxnm Fiber Coupled Diode Lasers. Proceedings of SPIE, 2015, vol. 9348, pp. 93480V. doi: 10.1117/12.2080506
  12. Hou L., Zhang H., Xu L., Li Y., Zou Y., Zhau X., Ma X. Design of high-brightness 976nm fiber-coupled laser diodes based on ZEMAX. Proceedings of SPIE, 2015, vol. 9521, pp. 95211F. doi: 10.1117/12.2177786
  13. Qi Y., Zhao P., Chen Q., Wu Y., Chen Y., Zou Y., Lin X. Design of 150W, 105-μm, 0.22NA, fiber coupled laser diode module by ZEMAX. Proceedings of SPIE, 2016, vol. 10152, pp. 101521H. doi: 10.1117/12.2247657
  14. Kotova E.I., Romanova G.E., Tsyganok H.A., Odnoblyudov M.A., Bougrov V.E. Efficiency analysis of optical schemes for the development of high power laser diode modules. Proceedings of SPIE, 2018, vol. 10695, pp. 106950T. doi: 10.1117/12.2313293
  15. Andryieuski A., Andryieuski V.F. Laser Diode Modules: Optical Coupling And Parts Bonding. Photonics, 2017, no. 3(63), pp. 74–79. (in Russian). doi: 10.22184/1993-7296.2017.63.3.74.79
  16. Werner M., Wessling C., Hengesbach S., Traub M., Hoffmann H.-D. 100 W / 100 µm passively cooled, fiber coupled diode laser at 976 nm based on multiple 100 µm single emitters. Proceedings of SPIE, 2009, vol. 7198, pp. 71980P. doi: 10.1117/12.810487


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика