doi: 10.17586/2226-1494-2019-19-6-1004-1012


DIGITAL IMAGE ABERRATION CORRECTION TECHNIQUE FOR STRUCTURED ILLUMINATION MICROSCOPY

F. M. Inochkin, N. R. Belashenkov


Read the full article  ';
Article in Russian

For citation:
Inochkin F.M., Belashenkov N.R. Digital image aberration correction technique for structured illumination microscopy. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 6, pp. 1004–1012 (in Russian). doi: 10.17586/2226-1494-2019-19-6-1004-1012


Abstract
Subject of Research. The paper presents research of image restoration quality decrease for the super-resolution structured illumination microscopy in case of defocus and aberrations affecting resulting image. Method. In order to improve restoration image quality, we propose image preprocessing procedure for compensation of defocus and aberrations along with point spread function reconstruction, based on Fourier optics theory and preliminary system calibration. We also propose a technique for automatic point spread function model adaptation to a defocus value by means of acquired images analysis, taking into account input data redundancy of structured illumination microscopy. Main Results. The proposed technique provides opportunity to reduce reconstructed image artifacts for systems with aberrations and unknown defocus to the same level as can be achieved with the diffraction-limited optics. Obtained simulation results demonstrate three-four-fold artifact amplitude decrease for reconstructed images for systems with aberrations, that can be expected for commercially-available objectives. Practical Relevance. Research results are applicable for image restoration quality improvement in super-resolution structured illumination microscopes, and also decrease the cost of new systems by means of non-specific optics without sacrificing high quality of resulting image.

Keywords: diffraction limit, image restoration, point spread function simulation, Fourier transform, super-resolution microscopy

Acknowledgements. The research is carried out at ITMO University under financial support of the Ministry of Science and Higher Education of the Russian Federation (project No 074-11-2018-004).

References
  1. Gustafsson M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 2000, vol. 198, no. 2, pp. 82–87. doi: 10.1046/j.1365-2818.2000.00710.x
  2. Kner P., Chhun B., Griffis E.R., Winoto L., Gustafsson M.G.L. Super-resolution video microscopy of live cells by structured illumination. Nature Methods, 2009, vol. 6, no. 5, pp. 339–342. doi: 10.1038/nmeth.1324
  3. Shroff S.A., Fienup J.R., Williams D.R. Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, vol. 27, no. 8, pp. 1770–1782. doi: 10.1364/JOSAA.27.001770
  4. Schermelleh L., Heintzmann R., Leonhardt H. A guide to super-resolution fluorescence microscopy. Journal of Cell Biology, 2010, vol. 190, no. 2, pp. 165–175. doi: 10.1083/jcb.201002018
  5. Zheng G., Horstmeyer R., Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics, 2013, vol. 7, no. 9, pp. 739–745. doi: 10.1038/nphoton.2013.187
  6. Dan D., Lei M., Yao B., Wang W., Winterhalder M., Zumbusch A., Qi Y., Xia L., Yan S., Yang Y., Gao P., Ye T., Zhao W. DMD-based LED-illumination Super-resolution and optical sectioning microscopy. Scientific Reports, 2013, vol. 3, no. 1, pp. 1116. doi: 10.1038/srep01116
  7. Gustafsson M.G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America, 2005, vol. 102, no. 37, pp. 13081–13086. doi: 10.1073/pnas.0406877102
  8. Rego E.H., Shao L., Macklin J.J., Winoto L., Johansson G.A., Kamps-Hughes N., Davidson M.W., Gustafsson M.G.L. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, vol. 109, no. 3, pp. E135–E143. doi: 10.1073/pnas.1107547108
  9. Müller M., Mönkemöller V., Henning S., Hübner W., Huser T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nature Communications, 2016, vol. 7, pp. 10980. doi: 10.1038/ncomms10980
  10. Lal A., Shan C., Xi P. Structured illumination microscopy image reconstruction algorithm. IEEE Journal on Selected Topics in Quantum Electronics, 2016, vol. 22, no. 4, pp. 50–63. doi: 10.1109/JSTQE.2016.2521542
  11. Zhang Y., Lang S., Wang H., Liao J., Gong Y. Super-resolution algorithm based on Richardson–Lucy deconvolution for three-dimensional structured illumination microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, vol. 36, no. 2, pp. 173–178. doi: 10.1364/JOSAA.36.000173
  12. Zhou X., Lei M., Dan D., Yao B., Yang Y., Qian J., Chen G., Bianco P.R. Image recombination transform algorithm for superresolution structured illumination microscopy. Journal of Biomedical Optics, 2016, vol. 21, no. 9, pp. 096009. doi: 10.1117/1.JBO.21.9.096009
  13. Goodman J.W. Introduction to Fourier optics. Roberts and Company Publishers, 2005, 491 p.
  14. Inochkin F.M., Pozzi P., Bezzubik V.V., Belashenkov N.R. Increasing the space-time product of super-resolution structured illumination microscopy by means of two-pattern illumination. Proceedings of SPIE, 2017, vol. 10333, pp. 103330K. doi: 10.1117/12.2271835
  15. Mertz J., Kim J. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. Journal of Biomedical Optics, 2010, vol. 15, no. 1, pp. 016027. doi: 10.1117/1.3324890
  16. Inochkin F., Kruglov S., Bronshtein I. Accurate 3D location estimation of point sources in single-sensor optical systems by means of wavefront phase retrieval and calibration. Proc. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2017, pp. 672–677. doi: 10.1109/EIConRus.2017.7910646
  17. Chernorutskii I.G. Optimization methods: computer technologies. St. Petersburg, BHV Publ., 2011, 384 p. (in Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика