doi: 10.17586/2226-1494-2020-20-2-263-271


HEAT EXCHANGER FOR NEUTRON THERMALIZATION DEVICE INBEAM RESEARCH VESSEL REACTOR

A. P. Serebrov, V. A. Lyamkin, A. O. Koptyukhov, M. S. Onegin, A. N. Kovalenko


Read the full article  ';
Article in Russian

For citation:
Serebrov A.P., Lyamkin V.A., Koptyukhov A.O., Onegin M.S., Kovalenko A.N. Heat exchanger for neutron thermalization device in beam research vessel reactor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 2, pp. 263–271 (in Russian). doi: 10.17586/2226-1494-2020-20-2-263-271


Abstract
The paper presents a neutron thermalization unit, “a source of ultracold neutrons”, designed for basic research in a beam research hull reactor. For new-generation experiments in the fields of weak-interaction physics and astrophysics, statistical accuracy associated with high density of ultracold neutrons is necessary. To achieve high density for helium-4 in the source chamber, which is used as a converter of cold neutrons into the ultracold ones, it should be at the temperature of about 1 K. In case of applying vacuum pumping of helium-4 vapors in ultracold neutron sources, it has not yet succeeded to obtain a temperature below 1.4 K. To achieve lower temperatures, the required saturated vapor pressure should be less than 50 Pa, which is impossible due to hydraulic losses. It is proposed to use a heat exchanger where helium-4 will be cooled by helium-3. The reason is that the temperature of helium-3 is more efficiently maintained by vacuum pumping since its saturated vapor pressure is an order of magnitude higher than that of helium-4. However, between two heliums the temperature drop occurs due to Kapitsa jump and thermal bridge between the helium capsule and heat exchanger. To solve this problem, we proposed optimization using numerical simulation on the basis of a mathematical model of thermal processes in a chamber with superfluid helium. The model takes into account the contact thermal resistance of Khalatnikov acoustic mismatch model with a correction coefficient. An example of such optimization is presented for the ultracold neutron source located in Gatchina. The mathematical model was implemented in the general solver based on the finite element method. A heat exchanger design geometry was proposed with the temperature drop equal to 0.2 K; the temperature of helium-4 was achieved by vacuum pumping of helium-3 vapors at the pressure of 850 Pa. The temperature fall from 1.4 K to 1 K will increase the density of ultracold neutrons by almost an order of magnitude, and increase statistical accuracy of experiments with ultracold neutrons carried out in a non-beam research reactor.

Keywords: ultracold neutrons, ultracold neutron source, superfluid helium, two-fluid model, beam research vessel reactor

References
  1. Kovalchuk M.V., Aksenov V.L., Dragunov Yu.G. et.al. First criticality of the PIK reactor. Power startup preparation plans. Proc. International Scientific and Technical Conference “Innovative Designs and Technologies of Nuclear Power”, 2012, pp. 42. (in Russian)
  2. Serebrov A.P., Vassiljev A.V., Varlamov V.E. et al. Reactor PIK and program of fundamental interactions research. Vestnik SPbSU. Physics and Chemistry, 2015, vol. 2, no. 4, pp. 309–318. (in Russian)
  3. Serebrov A.P., Lyamkin V.A., Koptyukhov A.O., Onegin M.S. Thermal mode of ultracold neutron source at WWR-M reactor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 3(121), pp. 538–545. (in Russian). doi: 10.17586/2226-1494-2019-19-3-538-545
  4. Lamoreaux K., Golub R. Experimental searches for the neutron electric dipole moment. Journal of Physics G: Nuclear and Particle Physics, 2009, vol. 36, no. 10, pp. 104002. doi: 10.1088/0954-3899/36/10/104002
  5. Chupp T.E., Fierlinger P., Ramsey-Musolf M.J., Singh J.T. Electric dipole moments of atoms, molecules, nuclei, and particles. Reviews of Modern Physics, 2019, vol. 91, no. 1, pp. 015001. doi: 10.1103/RevModPhys.91.015001
  6. AltarevI.S., BorisovYu.V., BorovikovaN.V. et.al.Searchfortheneutronelectricdipolemoment. Physics of Atomic Nuclei, 1996, vol. 59, no. 7, pp. 1152–1170.
  7. Serebrov А.Р. Neutron beta-decay, Standard Model and cosmology. Physics Letters B, 2007, vol. 650, no. 5-6, pp. 321–324. doi: 10.1016/j.physletb.2007.05.047
  8. Young R., Clayton S., Filippone B.W., Geltenbort P., Ito T.M., Liu C.-Y., Makela M., Morris C.L., Plaster B., Saunders A., Seestrom S.J., Vogelaar R.B. Beta decay measurements with ultracold neutrons: a review of recent measurements and the research program at Los Alamos National Laboratory. Journal of Physics G: Nuclear and Particle Physics, 2014, vol. 41, no. 11, pp. 114007. doi: 10.1088/0954-3899/41/11/114007
  9. Mathews G.J., Kajino T., Shima T. Big bang nucleosynthesis with a new neutron lifetime. Physical Review D, 2005, vol. 71, no. 2, pp. 021302. doi: 10.1103/PhysRevD.71.021302
  10. Wietfeldt F.E., Greene G.L. Colloquium: The neutron lifetime. Reviews of Modern Physics, 2011, vol. 83, no. 4, pp. 1173–1192. doi: 10.1103/RevModPhys.83.1173
  11. Serebrov A.P., Varlamov V.E., Kharitonov A.G., Fomin A., Pokotilovski Yu., Geltenbort P., Butterworth J., Krasnoschekova I., Lasakov M., Tal'daev R., Vassiljev A., Zherebtsov O. Measurement of the neutron lifetime using a gravitational trap and a low-temperature Fomblin coating. Physics Letters B, 2005, vol. 605, no. 1-2, pp. 72−78. doi: 10.1016/j.physletb.2004.11.013
  12. Serebrov A.P., Kolomenskii E.A., Fomin A.K., Koptyukhov A.O., Krasnoshchekova I.A., Vasil’ev A.V., Prudnikov D.M., Shoka I.V., Chechkin A.V., Chaikovskii M.E., Varlamov V.E., Ivanov S.N., Pirozhkov A.N., Geltenbort P., Zimmer O., Jenke T., Van Der Grinten M., Tucker M. Experimental setup for neutron lifetime measurements with a large gravitational trap at low temperatures. Technical Physics, 2019, vol. 64, no. 2, pp. 282–286. doi: 10.1134/S1063784219020191
  13. Abele H. The neutron ABC: Measurements of correlation coefficients in neutron beta-decay. Proc. 6th International UCN Workshop, 2005, vol. 110(4), pp. 401.
  14. Darius G., Byron W.A., DeAngelis C.R., Hassan M.T., Wietfeldt F.E., Collett B., Jones G.L., Dewey M.S., Mendenhall M.P., Nico J.S., Park H., Komives A., Stephenson E.J. Measurement of the electron-antineutrino angular correlation in neutron β decay. Physical Review Letters, 2017, vol. 119, no. 4, pp. 042502. doi: 10.1103/PhysRevLett.119.042502
  15. Berezhiani Z., Bento L. Neutron - mirror - neutron oscillations: How fast might they be? Physical Review Letters, 2006, vol. 96, no. 8, pp. 081801. doi: 10.1103/PhysRevLett.96.081801
  16. Serebrov A.P., Aleksandrov E.B., Dovator N.A., Dmitriev S.P., Fomin A.K., Geltenbort P., Kharitonov A.G., Krasnoschekova I.A., Lasakov M.S., Murashkin A.N., Shmelev G.E., Varlamov V.E., Vassiljev A.V., Zherebtsov O.M., Zimmer O. Experimental search for neutron–mirror neutron oscillations using storage of ultracold neutrons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, vol. 663, no. 3, pp. 181–185. doi: 10.1016/j.physletb.2008.04.014
  17. SerebrovA.P., KoptyukhovA.O., LyamkinV.A. Numerical modeling of natural convection of liquid deuterium under conditions of a reactor heat load. Journal of Instrument Engineering, 2019, vol. 62, no. 8, pp. 741–748. (in Russian). doi: 10.17586/0021-3454-2019-62-8-741-748
  18. HuangY.H., ChenG.B. Apracticalvaporpressureequationforhelium-3 from0.01 Ktothecriticalpoint. Cryogenics,2006,vol. 46,no. 12,pp. 833–839. doi: 10.1016/j.cryogenics.2006.07.006
  19. Kapitsa P.L. Helium-II heat transfer and superfluidity. Journal of Experimental and Theoretical Physics, 1941, vol. 11, no. 6, pp. 58. (in Russian)
  20. HalatnikovI.M. TheoryofSuperfludity. Moscow, Nauka Publ., 1971, 320 p. (inRussian)
  21. Darve C., Patankar N.A., Van Sciver S.W. A 3-D model of superfluid helium suitable for numerical analysis. Proc.22nd International Cryogenic Engineering Conference and International Cryogenic Materials Conference (ICEC-ICMC), 2008, pp. 261–266.
  22. Bottura L., Darve C., Patankar N.A., Van Sciver W. A method for the three-dimensional numerical simulation of superfluid helium. Journal of Physics: Conference Series, 2009, vol. 150, pp. 012008. doi: 10.1088/1742-6596/150/1/012008
  23. Leung K.K.H. Development of a new superfluid helium ultra-cold neutron source and a new magnetic trap for neutron lifetime measurements. PhD thesis.Technical University of Munich, 2013, 279 p.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика