doi: 10.17586/2226-1494-2020-20-3-353-363


RECOVERY OF DISCRETE SPECTRA RADIATED BY SUBSTANCE IN DEEP VACUUM USING INTEGRAL APPROXIMATION ALGORITHM

A. A. Aleksandrova, V. S. Sizikov


Read the full article  ';
Article in Russian

For citation:
Aleksandrova A.A., Sizikov V.S. Recovery of discrete spectra radiated by substance in deep vacuum using integral approximation algorithm. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 3, pp. 353–363 (in Russian). doi: 10.17586/2226-1494-2020-20-3-353-363


Abstract
Subject of Research. The topical spectroscopy inverse problem is considered: the recovery of a discrete (line) spectrum from the measured continuous spectrum and the spectrometer response (instrument, hardware, spread) function in the presence of noise. Method. The problem is reduced to solving a system of linear-nonlinear equations with respect to the intensities of lines entering linearly and the frequencies of lines entering nonlinearly in the spectrum. To solve the system of linear-nonlinear equations, an integral approximation algorithm is developed that combines the solution of a linear integral equation and a system of linear algebraic equations without solving non-linear equations. Main Results. The proposed solution makes it possible to determine the number of lines in the spectrum and their parameters and is confirmed by the solution of numerical examples. Practical Relevance. The proposed algorithm provides the increase of spectrometer resolution (resolve close lines and isolate weak lines from noise) by applying mathematical-computer processing of the discrete spectrum.

Keywords: spectroscopy inverse problem, discrete (line) spectrum, deep vacuum, system of linear nonlinear equations, intensities (amplitudes) and frequencies of lines, integral approximation algorithm, spectrometer resolution

Acknowledgements. This work was supported by the Government of the Russian Federation (Grant 08-08).

References
  1. Rautian S.G. Real spectral apparatus. Soviet Physics Uspekhi, 1958, vol. 66, no. 2, pp. 245–273. doi: 10.1070/PU1958v001n02ABEH003099
  2. Bousquet P. Spectroscopy and Its Instrumentation. London, Hilger, 1971, 239 p.
  3. Handbook of Vibrational Spectroscopy. Ed. by J.M. Chalmers, P.R. Griffiths. New York, Wiley, 2002, 4000 p. doi: 10.1002/0470027320
  4. Fleckl T., Jäger H., Obernberger I. Experimental verification of gas spectra calculated for high temperatures using the HITRAN/HITEMP database. Journal of Physics D: Applied Physics, 2002, vol. 35, no. 23, pp. 3138–3144. doi: 10.1088/0022-3727/35/23/315
  5. Sizikov V.S. Direct and Inverse Problems of Image Restoration, Spectroscopy and Tomography with MatLab. Tutorial. St. Petersburg, Lan’ Publ., 2017, 412 p. (in Russian)
  6. Sizikov V.S. Integral Equations and MATLAB in Problems of Tomography, Iconics, and Spectroscopy. Saarbrücken, LAP LAMBERT Academic Publishing, 2011, 252 p. (in Russian)
  7. Kauppinen J.K., Moffatt D.J., Mantsch H.H., Cameron D.G. Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Applied Spectroscopy, 1981, vol. 35, no. 3, pp. 271–276. doi: 10.1366/0003702814732634
  8. Stewart J.E. Resolution enhancement of X-ray fluorescence spectra with a computerized multichannel analyzer. Applied Spectroscopy, 1975, vol. 29, no. 2, pp. 171–174. doi: 10.1366/000370275774455257
  9. Sizikov V.S., Krivykh A.V. Reconstruction of continuous spectra by the regularization method using model spectra. Optics and Spectroscopy, 2014, vol. 117, no. 6, pp. 1010–1017. doi: 10.1134/S0030400X14110162
  10. Sizikov V.S. Generalized method for measurement data reduction. I. Processing of tonal (narrow-band) signals. Electronic Modeling, 1992, vol. 9, no. 4, pp. 618–633.
  11. Sizikov V. Use of an integral equation for solving special systems of linear-non-linear equations. Proc. Conf. Integral Methods in Science and Engineering (IMSE96). V. 2. Approximation Methods, 1997, pp. 200–205.
  12. Himmelblau D.M. Applied Nonlinear Programming. New York, McGray-Hill, 1972, 416 p.
  13. Rheinboldt W.C. Methods for Solving Systems of Nonlinear Equations. 2nd ed. Philadelphia, SIAM, 1998, 157 p.
  14. Kay S.M., Marple S.L.,Jr. Spectrum analysis – a modern perspective. Proceedings of the IEEE, 1981, vol. 69, no. 11, pp. 1380–1419. doi: 10.1109/PROC.1981.12184
  15. Peebles P.Z., Jr., Berkowitz R.S. Multiple-target monopulse radar processing techniques. IEEE Transactions on Aerospace and Electronic Systems, 1968, vol. AES-4, no. 6, pp. 845–854. doi: 10.1109/TAES.1968.5409051
  16. Falkovich S.E., Konovalov L.N. Estimation for unknown numbers of signals. Soviet Journal of Communications Technology and Electronics, 1982, vol. 27, no. 1, pp. 92–97.
  17. Golub G.H., Pereyra V. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM Journal on Numerical Analysis, 1973, vol. 10, no. 2, pp. 413–432. doi: 10.1137/0710036
  18. Mullen K.M., van Stokkum I.H.M. The variable projection algorithm in time-resolved spectroscopy, microscopy and mass spectrometry applications. Numerical Algorithms, 2009, vol. 51, no. 3, pp. 319–340. doi: 10.1007/s11075-008-9235-2
  19. Hegland M. Error bounds for spectral enhancement which are based on variable Hilbert scale inequalities. Journal of Integral Equations and Applications, 2010, vol. 22, no. 2, pp. 285–312. doi: 10.1216/JIE-2010-22-2-285
  20. Krivykh A.V., Sizikov V.S. Discrete spectra processing by an integral approximation algorithm. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 5(75), pp. 14–18. (in Russian)
  21. Sidorov D. Integral Dynamical Models: Singularities, Signals and Control. Singapore-London, World Scientific Publ., 2014, 243 p.
  22. Tikhonov A.N., Arsenin V.Ya. Solutions of Ill-Posed Problems. New York, Wiley, 1977, 258 p.
  23. Engl H., Hanke M., Neubauer A. Regularization of Inverse Problems. Dordrecht, Kluwer, 1996, 328 p.
  24. Petrov Yu.P., Sizikov V.S. Well-Posed, Ill-Posed, and Intermediate Problems with Applications. Leiden–Boston, VSP, 2005, 234 p.
  25. Voskoboinikov Yu.E., Preobrazhensky N.G., Sedel’nikov A.I. Mathematical Processing of Experiment in Molecular Gas Dynamics. Novosibirsk, Nauka Publ., 1984, 240 p. (in Russian)
  26. Sizikov V.S., Sidorov D.N. Generalized quadrature for solving singular integral equations of Abel type in application to infrared tomography. Applied Numerical Mathematics, 2016, vol. 106, pp. 69–78. doi: 10.1016/j.apnum.2016.03.004
  27. Tikhonov A.N., Goncharsky A.N., Stepanov V.V., Yagola A.G. Numerical Methods for the Solution of Ill-Posed Problems. Dordrecht, Kluwer, 1995, 254 p. doi: 10.1007/978-94-015-8480-7
  28. Yan L., Liu H., Zhong S., Fang H. Semi-blind spectral deconvolution with adaptive Tikhonov regularization. Applied Spectroscopy, 2012, vol. 66, no. 11, pp. 1334–1346. doi: 10.1366/11-06256
  29. Morozov V.A. Methods for Solving Incorrectly Posed Problems. New York, Springer-Verlag, 1984, 257 p. doi: 10.1007/978-1-4612-5280-1
  30. Sizikov V., Evseev V., Fateev A., Clausen S. Direct and inverse problems of infrared tomography. Applied Optics, 2016, vol. 55, no. 1, pp. 208–220. doi: 10.1364/AO.55.000208
  31. Starkov V.N. Constructive Methods of Computational Physics in Problems of Interpretation. Kiev, Naukova Dumka Publ., 2002, 264 p. (in Russian)
  32. Sizikov V., Sidorov D. Discrete spectrum reconstruction using integral approximation algorithm. Applied Spectroscopy, 2017, vol. 71, no. 7, pp. 1640–1651. doi: 10.1177/0003702817694181
  33. O’Leary D.P., Rust B.W. Variable projection for nonlinear least squares problems. Computational Optimization and Applications, 2013, vol. 54, no. 3, pp. 579–593. doi: 10.1007/s10589-012-9492-9


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика