doi: 10.17586/2226-1494-2020-20-3-377-381


E. I. Diskaeva, O. V. Vecher, E. N. Diskaeva, I. A. Bazikov, K. S. Elbekyan

Read the full article  ';
Article in English

For citation:
Diskaeva E.I., Vecher O.V., Diskaeva E.N., Bazikov I.A., Elbekyan K.S. Review of methods for size and morphology determination of vesicles in niosome dispersion. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 3, pp. 377–381 (in English). doi: 10.17586/2226-1494-2020-20-3-377-381

The paper provides comparative analysis of direct and indirect methods for assessing the size and morphological characteristics of niosome dispersions. Niosome sizes vary over a wide range: from 20 nm to 10 μm and more. The vesicle shape can also vary from perfectly spherical to elliptical and complexly curved in the case of aggregation. The size and shape of large particles with a diameter greater than 1 μm can be assessed by light microscopy. To study smaller vesicles, about 0.1–0.5 μm, it is advisable to use the technique of dynamic light scattering. Photometric method is reasonable to be used for an indirect assessment of the size of niosome vesicles in the range of 40–130 nm. For surface morphology study of the smallest niosomes, the method of scanning electron microscopy seems to be optimal.

Keywords: niosome dispersions, niosome vesicle size, dynamic light scattering, scanning electron microscopy, photometric method

  1. Abdelkader H., Farghaly U., Moharram H. Effects of surfactant type and cholesterol level on niosomes physical properties and in vivo ocular performance using timolol maleate as a model drug. Journal of Pharmaceutical Investigation, 2014, vol. 44, no. 5, pp. 329–337. doi: 10.1007/s40005-014-0121-8
  2. Sanklecha V.M., Pande V.V., Pawar S.S., Pagar O.B., Jadhav A.C. Review on niosomes. Austin Pharmacology & Pharmaceutics, 2018, vol. 3, no. 2, pp 1016.
  3. Md. Rageeb Md. Usman, Prasanna R. Ghuge, Bharat V. Jain. Niosomes: a novel trend of drug delivery. European Journal of Biomedical and Pharmaceutical Sciences, 2017, vol. 4, no. 7, pp. 436–442.
  4. Bartelds R., Nematollahi M.H., Pols T., Stuart M.C.A., Pardakhty A., Asadikaram G., Poolman B. Niosomes, an alternative for liposomal delivery. PLoS ONE, 2018, vol. 13, no. 4, pp. e0194179. doi: 10.1371/journal.pone.0194179
  5. Bayindir Z.S., Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of Pharmaceutical Sciences, 2010, vol. 99, no. 4, pp. 2049–2060. doi: 10.1002/jps.21944
  6. Yeo P.L., Lim C.L, Chye S.M., Ling A.P.K., Koh R.Y. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomedicine, 2017, vol. 11, no. 4, pp. 301–313. doi: 10.1515/abm-2018-0002
  7. Kamal M., Maher M., Ibrahim A., Louisan D. An overview on niosomes: a drug nanocarrier. Drug Designing & Intellectual Properties International Journal,2018, vol. 1, no. 5. doi: 10.32474/DDIPIJ.2018.01.000125
  8. Agarwal S., Bakshi V., Vitta P., Raghuram A.P., Pandey S., Udupa N. Effect of cholesterol content and surfactant HLB on vesicle properties of niosomes. Indian Journal of Pharmaceutical Sciences, 2004, vol. 66, no. 1, pp. 121–123.
  9. Bazikov I.A., Beyer E.V., Maltsev A.N., Goptareva E.A., Malinina N.I., Selimov M.A., Botasheva V.S. Study cardiotoxicity niosomal forms of doxorubicin. Medical News of North Caucasus, 2016, vol. 11, no. 3, pp. 421–425. (in Russian). doi: 10.14300/mnnc.2016.11093
  10. Bazikov I.A., Lukinova V.V., Maltsev A.N., Diskaeva E.I., Aytekova S.R. Interaction niosomal doxorubicin cell membranes. Medical News of North Caucasus, 2016, vol. 11, no. 1, pp. 108–111. (in Russian). doi: 10.14300/mnnc.2016.11011
  11. Bazikov I.A., Lukinova V.V., Malinina N.I., Maltsev A.N. Study of the mechanisms of intercellular interaction of the niosomal form of the antitumor drug doxorubicin with plasma membranes. Eurasian Union of Scientists, 2016, no. 3(24), pp. 34–35. (in Russian)
  12. Bazikov I.A., Omel’janchuk P.A. System for delivery of bioactive substances by using niosomes. Patent RU2320323, 2008. (in Russian)
  13. Levin A.D., Shmytkova E.A., Khlebtsov B.N. Multipolarization dynamic light scattering of nonspherical nanoparticles in solution. Journal of Physical Chemistry C, 2017, vol. 121, no. 5, pp. 3070–3077. doi: 10.1021/acs.jpcc.6b10226
  14. Sakurai T., Trirongjitmoach S., Nishibata Y., Namita T., TsujiM., Hui S.-P., Jin S., Shimizu K., Chiba H. Measurement of lipoprotein particle sizes using dynamic light scattering. Annals of Clinical Biochemistry, 2010, vol. 47, no. 5, pp. 476–481. doi: 10.1258/acb.2010.010100
  15. Diskaeva E.I., Vecher O.V., Bazikov I.A., Vakalov D.S. Particle size analysis of niosomes as a function of temperature. Nanosystems: physics, chemistry, mathematics, 2018, vol. 9, no. 2, pp. 290–294. doi: 10.17586/2220-8054-2018-9-2-290-294
  16. Diskaeva E.I., Bazikov I.A., Vecher O.V., Timchenko V.P., Selimov M.A. Evaluation of applicability of photometric method for determining the size of vesicules of niosomal dispersion. Medical News of North Caucasus, 2018, vol. 13, no. 1, pp. 108–110. (in Russian). doi: 10.14300/mnnc.2018.13030

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2021 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.