doi: 10.17586/2226-1494-2020-20-4-485-493


LASER HEATING NUMERICAL SIMULATION OF TITANIUM-CONTAINING OPTOTHERMAL FIBER CONVERTER AND VEIN WALL DURING ENDOVASALLASER COAGULATION

A. V. Belikov, T. Do, Y. V. Semyashkina


Read the full article  ';
Article in Russian

For citation:
Belikov A.V., Thanh Tung Do, Semyashkina Yu.V. Laser heating numerical simulation of titanium-containing optothermal fiber converter and vein wall during endovasal laser coagulation. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 4, pp. 485–493 (in Russian). doi: 10.17586/2226-1494-2020-20-4-485-493


Abstract
Subject of Research. The paper presents numerical methods that first studied laser heating of titanium-containing optothermal fiber converter and vein wall, as well as the effect of thermal damage of the vein wall during endovasal laser coagulation with different average power of 980 nm semiconductor laser and the traction speed of the converter inside the vein. Method. Models and conditions for numerical simulation of optical and thermal physical processes were formulated, occurring during endovasal laser coagulation of veins using titanium-containing optothermal fiber converter. The Monte Carlo method was used in optical modeling. The initial-edge task for a non-linear model of radiation-conductive heat transport with moving sources of radiation was analyzed at thermal simulation by the method of finite dispositions. The effect of vein wall thermal damage was assessed as a result of solving the Arrhenius equation. Main Results. The titanium-containing optothermal fiber converter can be used for endovasal laser coagulation of veins by radiation of 980 nm laser with average power up to 20 W. Laser radiation is almost completely absorbed by the converter. With the simultaneous start of laser radiation and the beginning of traction, the temperature of the vein wall does not immediately reach the maximum value; the waiting time can reach units and even tens of seconds. The temperature inside converter exceeds 250 °C. The optimal combinations of average laser power and titanium-containing converter traction speed are defined for uniform coagulation of the vein wall. Practical Relevance. The results can be used in the development of laser methods and devices for endovasal laser coagulation of veins.

Keywords: laser, converter, vein wall, heating, absorption, endovasal laser coagulation, radiation, numerical simulation

Acknowledgements. This work was financially supported by the Government of the Russian Federation (Grant 08-08).

References
1. Shevchenko Yu.L., Mazaishvili K.V., Stoiko Yu.M. Laser Surgery for Varicose Vein Disease. Moscow, Borges Publ., 2010, 196 p. (in Russian)
2. Proebstle T.M., Lehr H.A., Kargl A., Espinola Klein C., Rother W., Bethge S., Knop J. Endogenous treatment of the greater saphenous vein with a 940 nm diode laser: Thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. Journal of Vascular Surgery, 2002, vol. 35, no. 4, pp. 729–736. doi: 10.1067/mva.2002.121132
3. Van der Geld C.W.M., Van den Bos R.R. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation. Lasers in Medical Science, 2010, vol. 25, no. 6, pp. 907–909. doi: 10.1007/s10103-010-0780-2
4. Verdaasdonk R.M., Van Swol C.F.P,  Grimbergen M.C., Rem A.I. Imaging techniques for research and education of thermal and mechanical interactions of lasers with biological and model tissues. Journal of Biomedical Optics, 2006, vol. 11, no. 4, pp. 14–19. doi: 10.1117/1.2338817
5. Disselhoff  B.C., Rem A.I., Verdaasdonk R.M., Der Kinderen D.J., Moll F.L. Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology, 2008, vol. 23, no. 2, pp. 69–76. doi: 10.1258/phleb.2007.007038
6. Amzayyb M., Van Den Bos R.R., Kodach V.M., De Bruin D.M., Nijsten T., Neumann H. A.M., Van Gemert M.J.C. Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography. Lasers in Medical Science, 2010, vol. 25, no. 3, pp. 439–447. doi: 10.1007/s10103-009-0749-1
7. Dudenkova V.V., Shirmanova M.V., Lukina M.M., Feldshtein F.I., Virkin, A., Zagainova, E.V. Examination of collagen structure and state by the second harmonic generation microscopy. Biochemistry (Moscow), 2019, vol. 84, pp. 89–107. doi: 10.1134/S0006297919140062
8. Zhilin K.M., Minaev V.P., Sokolov A.L. Effect of laser radiation absorption in water and blood on the optimal wavelength for endovenous obliteration of varicose veins. Quantum Electronics, 2009, vol. 39, no. 8, pp. 781–784. doi: 10.1070/QE2009v039n08ABEH014071
9. Skrypnik A.V. Opto-thermal fiber converter of laser radiation. Journal of Instrument Engineering, 2013, vol. 56, no. 9, pp. 37–42. (in Russian)
10. Van den Bos R.R., Kockaert M.A., Neumann H.M., Bremmer R.H., Nijsten T., Van Gemert M.J. Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers in Medical Science, 2009. vol. 24, no. 2, pp. 247–251. doi: 10.1007/s10103-008-0639-y
11. Belikov A.V., Skrypnik A.V., Kurnyshev V.Yu., Shatilova K.V. Experimental and theoretical study of the heating dynamics of carbon-containing optothermal fibre converters for laser surgery. Quantum Electronics, 2016, vol. 46, no. 6, pp. 534–542. doi: 10.1070/QEL16134
12. Belikov A.V., Skrypnik A.V., Kurnyshev V.Y. Thermal and optical modeling of "blackened" tips for diode laser surgery. Proceedings of SPIE, 2016, vol. 9887, pp. 98873C. doi: 10.1117/12.2227840
13. Romanos G.E., Altshuler G., Yaroslavsky I. EPIC Pro: Re-Inventing Diode Laser Soft-Tissue Therapy Using Science and Technology. Irvine, CA, USA, BIOLASE Inc, 2016.
14. Belikov A.V., Skrypnik A.V. Laser heating dynamics and glow spectra of carbon-, titanium- and erbium-containing optothermal fibre converters for laser medicine. Quantum Electronics, 2017, vol. 47, no. 7, pp. 669–674. doi: 10.1070/QEL16369
15. Belikov A.V., Skrypnik A.V. Soft tissue cutting efficiency by 980 nm laser with carbon-, erbium-, and titanium-doped optothermal fiber converters. Lasers in Surgery and Medicine, 2019, vol. 51, no. 2, pp. 185–200. doi: 10.1002/lsm.23006
16. Belikov A.V., Skrypnik A.V., Salogubova I.S. Optical and thermal modeling of Ti-doped optothermal fiber converter for laser surgery. Proceedings of SPIE, 2019, vol. 11065, pp. 1106514. doi: 10.1117/12.2530981
17. Belikov A.V., Skrypnik A.V. Experimental and theoretical description of the process of contact laser surgery with a titanium-doped optothermal fibre converter. Quantum Electronics, 2020, vol. 50, no 2, pp. 95–103. doi: 10.1070/QEL17176
18. Tan M.K.H., Sutanto S.A., Onida S., Davies A.H. The relationship between vein diameters, clinical severity, and quality of life: A systematic review. European Journal of Vascular and Endovascular Surgery, 2019, vol. 57, no. 6, pp. 851–857. doi: 10.1016/j.ejvs.2019.01.024
19. De Mello Porciunculla M., Braga Diamante Leiderman D., Altenfeder R., Siqueira Barbosa Pereira C., Fioranelli A., Wolosker N., Castelli V., Jr. Clinical, ultrasonographic and histological findings in varicose vein surgery. Revista da Associacao Medica Brasileira, 2018, vol. 64, no. 8, pp. 729–735. doi: 10.1590/1806-9282.64.08.729
20. Rosukhovskii D.A., Iliukhin E.A., Simonova A.A., Khodzitsky M.K. Risk zone evaluation for modern technology of varicose veins radiofrequency thermal ablation. Journal of Physics: Conference Series, 2018, vol. 1062, no. 1, pp. 012007. doi: 10.1088/1742-6596/1062/1/012007
21. Bosschaart N., Edelman G.J., Aalders M.C., van Leeuwen T.G., Faber D.J. A literature review and novel theoretical approach on the optical properties of whole blood. Lasers in Medical Science, 2014, vol. 29, no. 2, pp. 453–479. doi: 10.1007/s10103-013-1446-7
22. Péry E., Blondel W.C.P.M., Didelon J., Leroux A., Guillemin F. Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy: Experimental and simulation results. IEEE Transactions on Biomedical Engineering, 2009, vol. 56, no. 5, pp. 1267–1276. doi: 10.1109/TBME.2009.2013719
23. dos Santos I., Haemmerich D., da Silva Pinheiro C., Ferreira da Rocha A. Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation. BioMedical Engineering Online, 2008, vol. 7, pp. 21. doi: 10.1186/1475-925X-7-21
24. Ignatieva N.Y., Zakharkina O.L., Masayshvili C.V., Maximov S.V., Bagratashvili V.N., Lunin V.V. The role of laser power and pullback velocity in the endovenous laser ablation efficacy: an experimental study. Lasers in Medical Science, 2017, vol. 32, no. 5, pp. 1105–1110. doi: 10.1007/s10103-017-2214-x
25. Belikov A.V., Skrypnik A.V., Smirnov S.N., Semyashkina Y.V. Temperature dynamics of soft tissues during diode laser cutting by different types of fiber opto-thermal converters. Proceedings of SPIE, 2017, vol. 10336, pp. 103360C. doi: 10.1117/12.2268866
26. Belikov A.V., Skrypnik A.V., Kurnyshev V.I. Modeling of structure and properties of thermo-optical converters for laser surgery. Proceedings of SPIE, 2016, vol. 9917, pp. 99170G. doi: 10.1117/12.2229750
27. Van Den Bos R.R., Van Ruijven P.W.M., Van Der Geld C.W.M., Van Gemert M.J.C., Neumann H.A.M., Nijsten T. Endovenous simulated laser experiments at 940 nm and 1470 nm suggest wavelength-independent temperature profiles. European Journal of Vascular and Endovascular Surgery, 2012, vol. 44, no. 1, pp. 77–81. doi: 10.1016/j.ejvs.2012.04.017
28. Fan C.-M., Rox-Anderson R. Endovenous laser ablation: mechanism of action. Phlebology, 2008, vol. 23, no. 5, pp. 206–213. doi: 10.1258/phleb.2008.008049
29. Poluektova A.A., Malskat W.S.J., van Gemert M.J.C., Vuylsteke M.E., Bruijninckx C.M.A., Neumann H.A.M., van der Geld C.W.M. Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling. Lasers in Medical Science, 2014, vol. 29, no. 2, pp. 441–452. doi: 10.1007/s10103-013-1450-y
30. Zhilin K.M. Effect of Near-Infrared Laser Radiation Wavelength on Force Action Type Affecting Biological Tissues (Blood, Venous Paries, Mucous Membrane and Bone Tissue). Author’s abstract of dissertation for the degree of candidate of physical and mathematical sciences. Moscow, MEPhI, 2013. Available at: https://mephi.ru/upload/avtoreferat/Zhilin.pdf (accessed: 01.06.2020). (in Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика