doi: 10.17586/2226-1494-2020-20-6-773-779


APPLICATION OF INDUCED MECHANICAL STRESSES IN FORMATION OF SPHERICAL SURFACES OF INTERFERENCE MIRROR SUBSTRATES

P. Y. Lobanov, I. S. Manuylovich, O. E. Sidoryuk, V. G. Semenov


Read the full article  ';
Article in Russian

For citation:
Lobanov P.Yu, Manuylovich I.S., Sidoryuk O.E., Semenov V.G. Application of induced mechanical stresses in formation of spherical surfaces of interference mirror substrates. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 6, pp. 773-779 (in Russian). doi: 10.17586/2226-1494-2020-20-6-773-779


Abstract
Subject of Research. The work deals with the technique for shaping of the polished substrate surfaces for interference mirrors of gas lasers, laser gyro sensors, in particular. The main attention is paid to the manufacture of parts from optical SO-115M sitall with a given curvature of the central zone and a flat surface of the peripheral ring, designed for installation on a laser resonator monoblock body by means of an optical contact. Method. The required shaping result was achieved by grinding and polishing of products in the presence of metered local mechanical stresses applied to the membrane in the central zone of the substrate. At this, the profile parameters were monitored using phase shifting interferometry technique. The experimental results were compared with the data of mathematical modeling by applying an engineering program for finite element analysis. Main Results. The main dependences of the curvature radii of spherical surfaces obtained in the technology under consideration are specified for various values of mechanical loads and geometric parameters of membranes. Particular attention is paid to consideration of the maximum stress values in the samples and their comparison with the ultimate strength characteristics of the material. It is shown that the considered technological approach can be effective in the manufacture of substrates for interference mirrors of gas laser resonators, including sensors of laser gyroscopes. In addition, the described technology can be used to manufacture aspherical substrate surfaces. Practical Relevance. The method considered provides for increase of the optical parts processing productivity in conditions of mass production.

Keywords: polishing, spherical surface, mechanical stress, sitall, laser phase-shifting interferometry

References
1. Kashirin V.I. Optical Surface Shaping Basics. Yekaterinburg, UrFU, 2006, 254 p. (in Russian)
2. Jacobs S.D. International innovations in optical finishing. Proceedings of SPIE, 2004, vol. 5523, pp. 264–272. doi: 10.1117/12.557274
3. Khudoley A., Gorodkin G., Gleb L., Aleksandronets A. The high-precision surfacing with magnetorheological fluids. The Science and Innovations, 2015, no. 6(148), pp. 20–23. (in Russian)
4. Sugawara J., Maloney Ch. Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using magnetorheological finishing (MRF). Proceedings of SPIE, 2016, vol. 9912, pp. 99120L. doi: 10.1117/12.2231165
5. Peng X., Yang C., Hu H., Dai Y. Measurement and algorithm for localization of aspheric lens in magnetorheological finishing. International Journal of Advanced Manufacturing Technology, 2017, vol. 88, no. 9-12, pp. 2889–2897. doi: 10.1007/s00170-016-9001-x
6. Cherezova L.A. Ion-Beam Methods in Optical Technology. St. Petersburg, ITMO, 2007, 151 p. (in Russian)
7. Cherezova L.A., Mikhaǐlov A.V., Zhevlakov A.P. Shaping the surface of multiphase optical materials by ion etching. Journal of Optical Technology, 2006, vol. 73, no. 11, pp. 812–814. doi: 10.1364/JOT.73.000812
8. Lee Ch.-Ch., Wan D.-Sh., Jaing Ch.-Ch., Chu Ch.-W. Making aspherical mirrors by thin-film deposition. Applied Optics, 1993, vol. 32, no. 28, pp. 5535–5540. doi: 10.1364/AO.32.005535
9. Potelov V.V., Senik B.N. Aspherization of high-accuracy optical elements by the vacuum-deposition method. Journal of Optical Technology, 2004, vol. 71, no. 12, pp. 814–818. doi: 10.1364/JOT.71.000814
10. Dorofeeva E.V., Lobanov P.Yu., Manuilovich I.S., Meshkov M.N., Sidoryuk O.E. Surface relief forming on optical ceramic articles by laser pyrolysis of organosilicon materials. Glass and Ceramics, 2017, vol. 73, no. 11–12, pp. 400–405. doi: 10.1007/s10717-017-9898-z
11. Lubliner J., Nelson J.E. Stressed mirror polishing. 1: A technique for producing nonaxisymmetric mirrors. Applied Optics, 1980, vol. 19, no. 14, pp. 2332–2340. doi: 10.1364/AO.19.002332
12. Nelson J.E., Gabor G., Hunt L.K., Lubliner J., Mast T.S. Stressed mirror polishing. 2: Fabrication of an off-axis section of a paraboloid. Applied Optics, 1980, vol. 19, no. 14, pp. 2341–2352. doi: 10.1364/AO.19.002341
13. Jedamzik R., Kunisch C., Westerhoff Th. ZERODUR® for stress mirror polishing. Proceedings of SPIE, 2011, vol. 8126, pp. 812606. doi: 10.1117/12.894421
14. Everhart E. Making corrector plates by schmidt's vacuum method. Applied Optics, 1966, vol. 5, no. 5, pp. 713–715. doi: 10.1364/AO.5.000713
15. Li Ch., Lei B., Han Y. The advancement of the high precision stress polishing. Proceedings of SPIE, 2016, vol. 9683, pp. 96831F. doi: 10.1117/12.2243234
16. Hugot E., Ferrari M., Hadi K., Vola P., Gimenez J.L., Lemaitre G.R., Rabou P., Dohlen K., Puget P., Beuzit J.L., Hubin N. Active optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system. Applied Optics, 2009, vol. 48, no. 15, pp. 2932–2941. doi: 10.1364/AO.48.002932
17. Lemaitre G. New procedure for making Schmidt corrector plates. Applied Optics, 1972, vol. 11, no. 7, pp. 1630–1636. doi: 10.1364/AO.11.001630
18. Azarova V.V., Golyaev Y.D., Savelyev I.I. Zeeman laser gyroscopes. Quantum Electronics, 2015, vol. 45, no. 2, pp. 171–179. doi: 10.1070/QE2015v045n02ABEH015539
19. Tikhmenev N.V., Zakurnaev S.A., Ozarenko A.V., Bystritsky V.S., Myagkov S.A., Stolyarov R.A., Chechetov K.E., Korshunov S.E. Influence of surface treatment and purification methods of CO-115M glass-ceramics on optical contact strength. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 4, pp. 613–619. (in Russian). doi: 10.17586/2226-1494-2016-16-4-613-619
20. Schreiber H., Bruning J.H. Phase Shifting Interferometry. Optical Shop Testing. Ed. by D. Malacara. John Wiley & Sons, Inc., 2007, pp. 547–655.
21. Lee H.-H. Finite Element Simulations with ANSYS Workbench 2019. SDC Publications, 2019, 614 p.
22. Hartmann P., Leys A., Carré A., Kerz F., Westerhoff Th. ZERODUR® - Bending strength data for etched surfaces. Proceedings of SPIE, 2014, vol. 9151, pp. 91512Q. doi: 10.1117/12.2055801
23. Döhring Th., Thomas A., Jedamzik R., Kohlmann H., Hartmann P. Manufacturing of lightweighted ZERODUR® components at SCHOTT. Proceedings of SPIE, 2007, vol. 6666, pp. 666602. doi: 10.1117/12.733770
24. Efremov A.A., Zakonnikov P.N., Bykov B.Z. Optical Parts Processing Technology. Moscow, Mashinostroenie Publ., 1975, 208 p. (in Russian)
25. Collins S.A. Analysis of optical resonators involving focusing elements. Applied Optics, 1964, vol. 3, no. 11, pp. 1263–1275. doi: 10.1364/AO.3.001263


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика