doi: 10.17586/2226-1494-2021-21-2-198-205


Solgel synthesis of Gd2O3:Nd3+ nanopowders and the study of their luminescent properties

A. Moussaoui, D. V. Bulyga, N. K. Kuzmenko, A. I. Ignatiev, S. K. Evstropiev, N. V. Nikonorov


Read the full article  ';
Article in Russian

For citation:

Moussaoui A., Bulyga D.V., Kuzmenko N.K., Ignat’ev A.I., Evstropiev S.K., Nikonorov N.V. Sol-gel synthesis of Gd2O3:Nd3+ nanopowders and the study of their luminescent properties. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 2, pp. 198–205 (in Russian). doi: 10.17586/2226-1494-2021-21-2-198-205



Abstract

The paper presents the results of the sol-gel synthesis of Gd2O3:Nd3+ nanopowders by the citrate method, as well as the study of their structure and luminescent properties. A technique for using two different organic stabilizers with different thermal stability in sol-gel synthesis has been proposed and tested. The luminescent properties of the obtained Gd2O3:Nd3+ powders have been studied in the ultraviolet and near infrared spectral regions. The citrate sol-gel method was used to synthesize the materials. Aqueous solutions of metal nitrates were used as the main initial components. Citric acid and polyvinylpyrrolidone were used as organic modifying components, playing a double role in the synthesis process, i.e. acting as stabilizers of forming nanoparticles in colloidal solutions and serving as a fuel additive in the process of heat treatment of materials. Infrared spectroscopy and differential thermal and thermogravimetric analyses were used to study the evolution of the structure of materials during synthesis. Crystalline Gd2O3:Nd3+ nanopowders were obtained by a low-temperature sol-gel method using citric acid and polyvinylpyrrolidone as stabilizers. The data of infrared spectroscopy and differential thermal and thermogravimetric analyses show that the formation of Gd2O3:Nd3+ nanoparticles begins at the stage of the crude gel and the evolution process develops during the drying and heat treatment of materials. It is shown that the use of two different organic stabilizers with different thermal stability provides stabilization of the forming Gd2O3:Nd3+ nanoparticles at different stages of synthesis in a wide temperature range. The luminescence spectra are observed in the UV spectral region under excitation of the synthesized nanopowders by radiation with a wavelength of 238 nm. They are determined by electronic transitions in the Gd2O3 crystalline matrix. The synthesized Gd2O3:Nd3+ nanopowders exhibit intense photoluminescence in the UV and near-IR spectral regions. The results can be used in the development of a technology for the synthesis of various composite phosphors, as well as in the creation of luminescent nanopowders for nanothermometry in medicine.


Keywords: sol-gel synthesis, absorption spectrum, luminescence, nanoparticle, Gd2O3:Nd3+

Acknowledgements. This work was funded by the Russian Foundation for Basic Research and Belarusian Republican Foundation for Fundamental Research (project No. 20-58-00054).

References
  1. Yu Y., Zheng Y.D., Qin F., Cheng Z.M., Zheng C.B., Zhang Z.G., Cao W.W. Experimental investigation on the upconversion mechanism of 754 nm NIR luminescence of Ho3+/Yb3+:Y2O3,Gd2O3 under 976 nm diode laser excitation. Journal of Luminescence, 2011, vol. 131, no. 2, pp. 190–193. doi: 10.1016/j.jlumin.2010.09.033
  2. Kumar R.G.A., Hata S., Gopchandran K.G. Diethylene glycol mediated synthesis of Gd2O3:Eu3+ nanophosphor and its Judd-Offelt analysis. Ceramics International, 2013, vol. 39, no. 8, pp. 9125–9136. doi: 10.1016/j.ceramint.2013.05.010
  3. Wang Z., Wang P., Zhong J., Liang H., Wang J. Phase transformation and spectroscopic adjustment of Gd2O3:Eu3+ synthesized by hydrothermal method. Journal of Luminescence, 2014, vol. 152, pp. 172–175. doi: 10.1016/j.jlumin.2013.11.040
  4. Dhananjaya N., Nagabhushana H., Sharma S.C., Rudraswamy B., Shivakumara C., Nagabhushana B.M. Hydrothermal synthesis of Gd2O3:Eu3+ nanophosphors: Effect of surfactant on structural and luminescence properties. Journal of Alloys and Compounds, 2014, vol. 587, pp. 755–762. doi: 10.1016/j.jallcom.2013.10.121
  5. Dhananjaya N., Nagabhushana H., Nagabhushana B.M., Rudraswamy B., Shivakumara C., Chakradhar R.P.S. Spherical and rod-like Gd2O3:Eu3+ nanophosphors – structural and luminescent properties. Bulletin of Materials Science, 2012, vol. 35, no. 4, pp. 519–527. doi: 10.1007/s12034-012-0330-6
  6. Ferrara M.C., Altamura D., Schioppa M., Tapfer L., Nichelatti E., Pilloni L., Montecchi M. Growth, characterization and optical properties of nanocrystalline gadolinia thin films prepared by sol-gel dip coating. Journal of Physics D: Applied Physics, 2008, vol. 41, no. 22, pp. 225408. doi: 10.1088/0022-3727/41/22/225408
  7. Liu X., Zhou F., Gu M., Huang S., Liu B., Ni C. Fabrication of highly a-axis-oriented Gd2O3:Eu3+ thick film and its luminescence properties. Optical Materials, 2008, vol. 31, no. 2, pp. 126–130. doi: 10.1016/j.optmat.2008.02.001
  8. Pang M.L., Lin J., Fu J., Xing R.B., Luo C.X., Han Y.C. Preparation, patterning and luminescent properties of nanocrystalline Gd2O3:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via Pechini sol-gel soft lithography. Optical Materials, 2003, vol. 23, no. 3-4, pp. 547–558. doi: 10.1016/S0925-3467(03)00020-X
  9. Jain A., Hirata G.A. Photoluminescence, size and morphology of red-emitting Gd2O3:Eu3+ nanophosphor synthesized by various methods. Ceramics International, 2016, vol. 42, no. 5, pp. 6428–6435. doi: 10.1016/j.ceramint.2016.01.053
  10. Kuzmenko N.K., Evstropiev S.K., Aseev V.A., Danilovich D.P., Nikonorov N.V., Ignatiev A.I., Matrosova A.S., Demidov V.V., Emerson A.V., Sevastyanova I.M. Polymer-salt synthesis of Gd2O3:Nd3+ nanophosphors. Journal of Physics: Conference Series, 2020, vol. 1695, pp. 012184. doi: 10.1088/1742-6596/1695/1/012184
  11. Majeed S., Shivaahankar S.A. Rapid, microwave-assisted synthesis of Gd2O3 and Eu:Gd2O3 nanocrystals: characterization, magnetic, optical and biological studies. Journal of Materials Chemistry B, 2014, vol. 2, no. 34, pp. 5585–5593. doi: 10.1039/c4tb00763h
  12. Seo S., Yang H., Holloway P.H. Controlled shape growth of Eu- or Tb-doped luminescent Gd2O3 colloidal nanocrystals. Journal of Colloid and Interface Science, 2009, vol. 331, no. 1, pp. 236–242. doi: 10.1016/j.jcis.2008.11.016
  13. Tamrakar R.K., Bisen D.R., Sahu I.P. Structural characterization of combustion synthesized Gd2O3 nanopowder by using glycerin as fuel. Advance Physics Letter, 2014, vol. 1, no. 1, pp. 6–9.
  14. Sun L., Yao J., Liu C., Liao C., Yan C. Rare earth activated nanosized oxide phosphors: synthesis and optical properties. Journal of Luminescence, 2000, vol. 87-89, pp. 447–450. doi: 10.1016/S0022-2313(99)00471-8
  15. Tamrakar R.K., Upadhyay K. Gd2O3: A Luminescent Material. Rare Earth Elements and Their Minerals. IntechOpen, 2020, pp. 186. doi: 10.5772/intechopen.92310
  16. Tamrakar R.K., Bisen D.P., Upadhyay K., Sahu M., Sahu I.P., Brahme N. Comparison of emitted color by pure Gd2O3 prepared by two different methods by CIE coordinates. Superlattices and Microstructures, 2015, vol. 88, pp. 382–388. doi: 10.1016/j.spmi.2015.09.033
  17. Michel C.R., López-Contreras N.L., Martínez-Preciado A.H. Gas sensing properties of Gd2O3 microspheres prepared in aqueous media containing pectin. Sensors and Actuators B: Chemical, 2013, vol. 177, pp. 390–396. doi: 10.1016/j.snb.2012.11.018
  18. Atabaev T.Sh., Hong H.T., Piao Z., Hwang Y.-H., Kim H.-K. Tailoring the luminescent properties of Gd2O3:Tb3+ phosphor particles by codoping with Al3+ ions. Journal of Alloys and Compounds, 2012, vol. 541, pp. 262–268. doi: 10.1016/j.jallcom.2012.06.119
  19. Goldys E.M., Drozdowicz-Tomsia K., Jinjun S., Dosev D., Kennedy I.M., Yatsunenko S., Godlewski M. Optical characterization of Eu-doped and undoped Gd2O3 nanoparticles synthesized by the hydrogen flame pyrolysis method. Journal of the American Chemical Society, 2006, vol. 128, no. 45, pp. 14498–14505. doi: 10.1021/ja0621602
  20. Costa G.A., Artini C., Ubaldini A., Carnasciali M.M., Mele P., Masini R. Phase stability study of the pseudobinary system Gd2O3-Nd2O3 (T≙1350°C). Journal of Thermal Analysis and Calorimetry, 2008, vol. 92, no. 1, pp. 101–104. doi: 10.1007/s10973-007-8744-x
  21. Hao B.V., Huy P.T., Khiem T.N., Ngueyn T., Thanh Ngan N.T., Duong P.H. Synthesis of Y2O3:Eu3+ micro- and nanophosphors by sol-gel process. Journal of Physics: Conference Series, 2009, vol. 187, pp. 012074. doi: 10.1088/1742-6596/187/1/012074
  22. Gorelova A.V., Evstropiev S.K., Efremov A.M., Konovalov A.V., Petrovskii G.T., Semenov A.D., Shashkin V.S. Inorganic sol-gel synthesis of monolithic silica glasses with the use of aerosils. Glass Physics and Chemistry, 1999, vol. 25, no. 3, pp. 274–280.
  23. Guo H., Yang X., Xiao T., Zhang W., Lou L., Mugnier J. Structure and optical properties of sol-gel derived Gd2O3 waveguide films. Applied Surface Science, 2004, vol. 230, no. 1-4, pp. 215–221. doi: 10.1016/j.apsusc.2004.02.032
  24. Mikhaylov M.D., Mamonova D.V., Kolesnikov I.E., Manshina A.A. Optical properties of YAG: ND nanoparticles. Modern problems of science and education, 2012, no. 4, pp. 340. (in Russian)
  25. Morales Pamíres A.D.J., García Murillo A., Carillo Romo F. de J., García Hernández M., Jaramillo Vigueras D., Chaderyron G., Boyer D. Properties of Gd2O3:Eu3+, Tb3+ nanopowders obtained by sol-gel process. Materials Research Bulletin, 2010, vol. 45, no. 1, pp. 40–45. doi: 10.1016/j.materresbull.2009.09.005
  26. Evstropiev S.K., Vasilyev V.N., Nikonorov N.V., Kolobkova E.V., Volkova N.A., Boltenkov I.A. Photoactive ZnO nanosuspension for intensification of organics contaminations decomposition. Chemical Engineering and Processing: Process Intensification, 2018, vol. 134, pp. 45–50. doi: 10.1016/j.cep.2018.10.020
  27. Ciriminna R., Meneguzzo F., Delisi R., Pagliaro M. Citric acid: emerging applications of key biotechnology industrial product. Chemistry Central Journal, 2017, vol. 11, no. 1, pp. 22. doi: 10.1186/s13065-017-0251-y
  28. Evstropiev S.K., Soshnikov I.P., Kolobkova E.V., Evstropyev K.S., Nikonorov N.V., Khrebtov A.I., Dukelskii K.V., Kotlyar K.P., Oreshkina K.V., Nashekin A.V. Polymer-salt synthesis and characterization of MgO-ZnO ceramic coatings with the high transparency in UV spectral range. Optical Materials, 2018, vol. 82, pp. 81–87. doi: 10.1016/j.optmat.2018.05.029
  29. Evstrop’ev K.S., Gatchin Y.A., Evstrop’ev S.K., Dukel’skii K.V., Kislyakov I.M., Pegasova N.A., Bagrov I.V. Spectral and luminescence properties of sols and coatings containing CdS/ZnS QDs and polyvinylpyrrolidone. Optics and Spectroscopy, 2016, vol. 120, no. 3, pp. 415–422. doi: 10.1134/S0030400X16030061
  30. Li Q.B., Lin J.M., Wu J.H., Lan Z., Wang J.L., Wang Y., Peng F.G., Huang M.L., Xiao Y.M. Preparation of Gd2O3:Eu3+ downconversion luminescent material and its application in dye-sensitized solar cells. Chinese Science Bulletin, 2011, vol. 56, no. 28-29, pp. 3114–3118. doi: 10.1007/s11434-011-4664-z
  31. Physics and Spectroscopy of Laser Crystals. Ed. by A.A. Kaminskii. Moskow, Nauka Publ., 1986, 272 p. (in Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика