doi: 10.17586/2226-1494-2021-21-3-320-325


Sensing element for the formation fluid refractometer on the basis of total internal reflection

A. S. Bobe, A. O. Voznesenskaya, A. V. Bakholdin, V. E. Strigalev, V. N. Vasiliev


Read the full article  ';
Article in Russian

For citation:
Bobe A.S., Voznesenskaya A.O., Bakholdin A.V., Strigalev V.E., Vasilev V.N. Sensing element for the formation fluid refractometer on the basis of total internal reflection. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 3, pp. 320–325 (in Russian). doi: 10.17586/2226-1494-2021-21-3-320-325


Abstract
When developing oil fields, there is an urgent task to quickly determine the type of pumped formation fluid, which includes formation gas, formation oil and formation water. In this paper, we propose a new type of a sensor element designed for flow refractometry of formation fluid based on the effect of total internal reflection. The sensor element is a taper tip of a conical shape made of sapphire and is 20 mm in length and 20 mm in diameter. The original shape of the sensor element is determined by a modified ray tracing method, taking into account analytical relations that determine the conditions for providing a larger dynamic range of measurements under specified physical, technological and design constraints. The conversion dependence of the tip is obtained for the wavelengths of 405 nm, 1064 nm and 3300 nm and allows determining the type of formation fluid (gas/water/oil). The proposed method enables the development of conical sensor elements based on the total internal reflection for downhole monitoring systems and optical threshold sensors of the refractive index.

Keywords: conical tip, total internal reflection, formation fluid, downhole monitoring, refractometry, threshold refractive index sensor

References
1.  Burkhanov R.N. Optical properties of oil. Uchenye zapiski Al'met'evskogo gosudarstvennogo neftjanogo institute, 2012, vol. 10, no. 2, pp. 238–248. (in Russian)
2.  Sroka S., Cartellieri A., Schaefer P. In-situ refraction apparatus and method. Patent US20100025112A1, 2010.
3.  Mullins O.C., Pomerantz A.E., Zuo J.Y., Dong C. Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation. Annual Review of Chemical and Biomolecular Engineering, 2014, vol. 5, pp. 325–345. doi: 10.1146/annurev-chembioeng-060713-035923
4. Mullins O.C., Schroer J. Real-time determination of filtrate contamination during openhole wireline sampling by optical spectroscopy. Proceedings - SPE Annual Technical Conference and Exhibition, 2000, vol. OMEGA, no. 11, pp. 395–407. doi: 10.2118/63071-ms
5. Müller N., Elshahawi H., Dong C., Mullins O.C., Flannery M., Ardila M., Weinheber P., McDade E.C. Quantification of carbon dioxide using downhole wireline formation tester measurements. Proceedings - SPE Annual Technical Conference and Exhibition, 2006, vol. 1, no. 9, pp. 161–170. doi: 10.2118/100739-ms
6. Mullins O.C., Hashem M., Elshahawi H., Fujisawa G., Dong C., Betancourt S., Terabayashi T. Hydrocarbon compositional analysis in-situ in openhole wireline logging. SPWLA 45th Annual Logging Symposium, 2004, pp. SPWLA-2004-FFF.
7. Di Foggio R., Climent H.C. Immersed lens downhole refractometer. Patent US20200291777A1, 2020.
8. Di Foggio R., Uolkov A.M., Bergren P.A. Device and method for measuring refraction coefficient of formation fluid. Patent RU2318200C2, 2008. (in Russian)
9.  Dong C., Mullins O.C., Hegeman P.S., Teague R., Kurkjian A., Elshahawi H. In-situ contamination monitoring and GOR measurement of formation fluid samples. Proc. SPE Asia Pacific Oil and Gas Conference and Exhibition, 2002,pp. 635–643. doi: 10.2118/77899-ms
10. Cartellieri A., Kischkat T., Sroka S., Meister M. New optical sensor system for improved fluid identification and fluid typing during LWD sampling operations. Proc. SPE/IADC Drilling Conference, 2017, vol. 2017-March, pp. 1260–1277. doi: 10.2118/184717-ms
11. AvramenkoE.V., BelovN.P., OdnovorchenkoP.V., SherstobitovaA.S., YaskovA.D. Optical properties of carbamide aqueous solutions. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 2, pp. 271–276. (in Russian). doi: 10.17586/2226-1494-2016-16-2-271-276
12. Grebenikova N.M., Myazin N.S., Rud V.Y., Davydov R.V. Monitoring of flowing media state by refraction phenomenon.Proc. 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), 2018, pp. 295–297. doi: 10.1109/EExPolytech.2018.8564409
13. Contreras-Tello H., Márquez-Islas R., Vázquez-Estrada O., Sánchez-Pérez C., García-Valenzuela A. Understanding the performance of Abbe-type refractometers with optically absorbing fluids.Measurement Science and Technology, 2014,vol. 25, no. 7, pp. 075201. doi: 10.1088/0957-0233/25/7/075201
14. Bali L.M., Shukla R.K., Srivastava P., Srivastava A., Srivastava A., Kulshreshtha A. New approach to the measurement of refractive index.Optical Engineering, 2005, vol. 44, no. 5, pp. 058002. doi: 10.1117/1.1900090
15. Huang X.-F., Chen Z.-M., Shao L.-Y., Cen K.-F., Sheng D.-R., Chen J., Zhou H. Design and characteristics of refractive index sensor based on thinned and microstructure fiber Bragg grating.Applied Optics, 2008, vol. 47, no. 4, pp. 504–511. doi: 10.1364/AO.47.000504
16. Jiang B., Zhou K., Wang C., Zhao Y., Zhao J., Zhang L. Temperature-calibrated high-precision refractometer using a tilted fiber Bragg grating.Optics Express, 2017, vol. 25, no. 21, pp. 25910–25918. doi: 10.1364/oe.25.025910
17. DiFoggio P., Walkow A., Bergren P. Method and apparatus for a downhole refractometer and attenuated reflectance spectrometer. Patent US6683681B2, 2004.
18. Betancourt S., Fujisawa G., Mullins O.C., Carnegie A., Dong C., Kurkjian A., Eriksen K.O., Haggag M., Jaramillo A.R., Terabayashi H. Analyzing hydrocarbons in the borehole. Oilfield Review, 2003, vol. 15, no. 3.
19. Tikhonov E.A., Ivashkin V.A., Ljamec A.K. Reflection refractometry for nearly normal incidence and at the Brewster angle. Journal of Applied Spectroscopy, 2012, vol. 79, no. 1, pp. 148–156. doi: 10.1007/s10812-012-9577-3


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика