doi: 10.17586/2226-1494-2021-21-3-361-373


The study of spontaneous domain nucleation in the interelectrode gap of phase modulator based on titanium indiffused waveguides in lithium niobate crystals

S. M. Aksarin, A. V. Smirnova, V. A. Shulepov, P. S. Parfenov, V. E. Strigalev, I. K. Meshkovsky


Read the full article  ';
Article in Russian

For citation:
Aksarin S.M., Smirnova A.V., Shulepov V.A., Parfenov P.S., Strigalev V.E., Meshkovskiy I.K. The study of spontaneous domain nucleation in the interelectrode gap of phase modulator based on titanium indiffused waveguides in lithium niobate crystals. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 3, pp. 361–373 (in Russian). doi: 10.17586/2226-1494-2021-21-3-361-373


Abstract
The paper presents the analysis of nucleating kinetics and growing of switched domains in the surface layer of monodomain lithium niobate X-cut crystal in the interelectrode gap of integrated optical phase modulators. The work proposes the morphology model of domains growing along the boundary of surface electrodes in X-cut phase modulators. The mechanism of spontaneous needle-like domain growing as a result of the electric field induced by the pyroelectric effect at temperature changing of the crystal was theoretically substantiated. The Comsol Multiphysics cross-platform was used for the numerical estimation of the pyroelectric field in the interelectrode gap. The needle-like domain structures were studied experimentally at industrial samples of integrated optical phase modulators based on Ti:LiNbOwaveguides. The experimental research of the form and size of domains was performed with the anisotropic etching method by HF solution and followed by visual analysis. For non-destructive testing, the authors used scanning electron microscopy and piezo-response force microscopy. For the first time, the morphology of needle-like domains occurring in the interelectrode gap of phase modulators based on lithium niobate was experimentally studied. The results showed the theoretical and numerical model of domain growing that involves the pyroelectric nature of the electric field. It was demonstrated that along the electrode boundary, the needle-like domains grow up to 20 μm long at normal conditions and achieve 30 μm after the thermal shock by cooling at ∆T = – 125 °С. The discovered switched domains in the interelectrode gap can affect electro-optical characteristics of integrated optical phase modulators with the lithium niobate base and should be taken into account in the future design of electrode topology and modulator usage.

Keywords: lithium niobate, phase modulator, waveguide, pyroelectric effect, pyroelectric field, domain, needle-like domain, nucleating, polarization switching, domain wall, piezo-response force microscopy.

Acknowledgements. This work was done at ITMO University and was supported by the Ministry of Science and Higher Education of the Russian Federation under the Agreement No. 075-11-2019-026 of 27.11.2019, the project title: “The production development of fiber-optic gyroscopes for applications in measuring instruments and land vehicle systems”. We acknowledge support from the CIOT ITMO University for PFM measuring. We are also grateful to Viktor V. Zakharov for CLSM image measuring and Vyacheslav Yu. Bobov for SEM measuring and valuable discussions.

References
1. Sun S., He M., Xu M., Gao S., Chen Z., Zhang X., Ruan Z., Wu X., Zhou L., Liu L., Lu C., Guo C., Liu L., Yu S., Cai X. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform. Photonics Research, 2020, vol. 8, no. 12, pp. 1958–1963. doi: 10.1364/PRJ.403167
2.  Bulmer C.H., Greenblatt A.S., Moeller R.P., Burns W.K. Bias point stability of packaged lithium niobate linear modulators. Proc. Integrated Photonics Research. Dana Point, California, United States, 1995, pp. IFE3. doi: 10.1364/IPR.1995.IFE3
3. Beaumont A.R., Daymond-John B.E., Booth R.C. Effect of ambient water vapour on stability of lithium niobate electro-optic waveguide devices. Electronics Letters, 1986, vol. 22, no. 5, pp. 262–263. doi: 10.1049/el:19860180
4.  Higuma K., Hashimoto Y., Yatsuki M., Nagata H. Electrode design to suppress thermal drift in lithium niobate modulators. Electronics Letters, 2000, vol. 36, no. 24, pp. 2013–2014. doi: 10.1049/el:20001260
5.  Nagata H., Oikawa S., Yamada M. Comments on fabrication parameters for reducing thermal drift on LiNbO3 optical modulators. Optical Engineering, 1997, vol. 36, no. 1, pp. 283–286. doi: 10.1117/1.601172
6. Ponomarev R.S., Shevtsov D.I., Karnaushkin P.V. “Shutdown” of the proton exchange channel waveguide in the phase modulator under the influence of the pyroelectric effect. Applied Sciences, 2019, vol. 9, no. 21, pp. 4585. doi: 10.3390/app9214585
7. Gopalan V., Mitchell T.E. Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals. Journal of Applied Physics, 1998, vol. 83, no. 2, pp. 941–954. doi: 10.1063/1.366782
8. Gopalan V., Mitchell T.E., Furukawa Y., Kitamura K. The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals. Applied Physics Letters, 1998, vol. 72, no. 16, pp. 1981–1983. doi: 10.1063/1.121491
9.  Soergel E. Visualization of ferroelectric domains in bulk single crystals. Applied Physics B: Lasers and Optics, 2005, vol. 81, no. 6, pp. 729–751. doi: 10.1007/s00340-005-1989-9
10. Kuzminov Iu.S. Electrooptic and nonlinear Optical Crystal of Lithium Niobate. Moscow, Nauka Publ., 1987, 263 p. (in Russian)
11.  Gopalan V., Gupta M.C. Origin and characteristics of internal fields in LiNbO3 crystals. Ferroelectrics, 1997, vol. 198, no. 1, pp. 49–59. doi: 10.1080/00150199708228337
12. Ro J.H., Jeon O.-Y., Kim T.-H., Ro J.-H., Cha M. Non-stoichiometric defect effect on coercive field in lithium niobate crystals. Ferroelectrics, 2002, vol. 269, no. 1, pp. 231–236. doi: 10.1080/713716050
13. Baturin I.S., Akhmatkhanov A.R., Shur V.Y., Nebogatikov M.S., Dolbilov M.A., Rodina E.A. Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics, 2008, vol. 374, no. 1, pp. 1–13. doi: 10.1080/00150190802418860
14. Shur V.Y., Mingaliev E.A., Lebedev V.A., Kuznetsov D.K., Fursov D.V. Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals. Journal of Applied Physics, 2013, vol. 113, no. 18, pp. 187211. doi: 10.1063/1.4801969
15. Popescu S.T., Petris A., Vlad V.I. Interferometric measurement of the pyroelectric coefficient in lithium niobate. Journal of Applied Physics, 2013, vol. 113, no. 4, pp. 43101. doi: 10.1063/1.4788696
16. Parravicini J., Safioui J., Degiorgio V., Minzioni P., Chauvet M. All-optical technique to measure the pyroelectric coefficient in electro-optic crystals. Journal of Applied Physics, 2011, vol. 109, no. 3, pp. 033106. doi: 10.1063/1.3544069
17. Yevdokimov S.V., Shostak R.I., Yatsenko A.V. Anomalies in the pyroelectric properties of LiNbO3 crystals of the congruent composition. Physics of the Solid State, 2007, vol. 49, no. 10, pp. 1957–1962. doi: 10.1134/S1063783407100241
18. Yatsenko A.V., Palatnikov M.N., Sidorov N.V., Pritulenko A.S., Evdokimov S.V. Specific features of electrical conductivity of LiTaO3 and LiNbO3 crystals in the temperature range of 290–450 K. Physics of the Solid State, 2015, vol. 57, no. 8, pp. 1547–1550. doi: 10.1134/S1063783415050339
19. Shur V.Y., Rumyantsev E.L., Nikolaeva E.V., Shishkin E.I. Formation and evolution of charged domain walls in congruent lithium niobate. Applied Physics Letters, 2000, vol. 77, no. 22, pp. 3636–3638. doi: 10.1063/1.1329327
20. Yatsenko A.V., Evdokimov S.V. Effect of an iron impurity on the electrical conductivity of LiNbO3 crystals. Physics of the Solid State, 2020, vol. 62, no. 3, pp. 485–491. doi: 10.1134/S1063783420030269
21. Shur V.Ia., Rumiantcev E.L. Investigation of Kinetics of Submicron and Nano-Domain Structures in Ferroelectric Single Crystals under External Influence. Tutorial. Yekaterinburg, Ural State University, 2007, 105 p. (in Russian)
22. Argiolas N., Bazzan M., Bernardi A., Cattaruzza E., Mazzoldi P., Schiavuta P., Sada C., Hangen U. A systematic study of the chemical etching process on periodically poled lithium niobate structures. Materials Science and Engineering: B, 2005, vol. 118, no. 1-3, pp. 150–154. doi: 10.1016/j.mseb.2004.12.088
23.  Wicks B.J., Lewis M.H. Direct observations of ferroelectric domains in lithium niobate. Physica Status Solidi (b), 1968, vol. 26, no. 2, pp. 571–576. doi: 10.1002/pssb.19680260221
24.  Randles A.B., Esashi M., Tanaka S. Etch rate dependence on crystal orientation of lithium niobate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, vol. 57, no. 11, pp. 2372–2380. doi: 10.1109/TUFFC.2010.1705
25. Sones C.L., Mailis S., Brocklesby W.S., Eason R.W., Owen J.R. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. Journal of Materials Chemistry, 2002, vol. 12, no. 2, pp. 295–298. doi: 10.1039/b106279b
26. Kokhanchik L.S., Bodnarchuk Y.V., Volk T.R. Electron beam domain writing in reduced LiNbO3 crystals. Journal of Applied Physics, 2017, vol. 122, no. 10, pp. 104105. doi: 10.1063/1.4991509
27. Vlasov E., Chezganov D., Chuvakova M., Shur V.Y. The ferroelectric domain structures induced by electron beam scanning in lithium niobate. Scanning, 2018, vol. 2018, pp. 7809826. doi: 10.1155/2018/7809826
28. Aristov V.V., Kokhanchik L.S., Voronovskii Y.I. Voltage contrast of ferroelectric domains of lithium niobate in SEM. Physica Status Solidi (a), 1984, vol. 86, no. 1, pp. 133–141. doi: 10.1002/pssa.2210860113
29. Kokhanchik L.S. The use of surface charging in the SEM for lithium niobate domain structure investigation. Micron, 2009, vol. 40, no. 1, pp. 41–45. doi: 10.1016/j.micron.2008.02.009
30. Jungk T., Hoffmann Á., Soergel E. Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy. New Journal of Physics, 2009, vol. 11, no. 3, pp. 033029. doi: 10.1088/1367-2630/11/3/033029
31. Shur V.Y., Lobov A.I., Shur A.G., Kurimura S., Nomura Y., Terabe K., Liu X.Y., Kitamura K. Rearrangement of ferroelectric domain structure induced by chemical etching. Applied Physics Letters, 2005, vol. 87, no. 2, pp. 022905. doi: 10.1063/1.1993769
32. Manzo M., Denning D., Rodriguez B.J., Gallo K. Nanoscale characterization of β-phase HxLi1−xNbO3 layers by piezoresponse force microscopy. Journal of Applied Physics, 2014, vol. 116, no. 6, pp. 066815. doi: 10.1063/1.4891352


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика