doi: 10.17586/2226-1494-2021-21-4-457-462


Features of the morphology of micro- and nanoporous copper and silver films synthesized by substitution reaction for photocatalytic application. 

P. A. Bezrukov, A. V. Nashchekin, N. V. Nikonorov, A. I. Sidorov


Read the full article  ';
Article in Russian

For citation:
Bezrukov P.A., Nashchekin A.V., Nikonorov N.V., Sidorov A.I. Features of the morphology of micro- and nanoporous copper and silver films synthesized by substitution reaction for photocatalytic application. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 4, pp. 457–462 (in Russian). doi: 10.17586/2226-1494-2021-21-4-457-462 


Abstract

The paper presents the results of an experimental investigation of the morphology of copper and silver thin films synthesized by the substitution reaction method. Silver films were synthesized by immersing polished substrates of copper (M1 brand) into silver nitrate solution. Copper films were synthesized by immersing substrates of iron (electrolytic iron brand) and also of iron with vacuum deposited tin film of 5 μm thick into copper vitriol solution. The morphology of synthesized films was analyzed by a scanning electron microscope. The research has shown that the metal films with the thickness of around 1 μm are formed 2 seconds after the reaction start point. The films consist of crystal micro- and nanodendrites. The silver films also contain crystalline plates of silver oxide with characteristic size up to 2 μm. With an increase of reaction time the metal layers are compacted. And minimal pore sizes in this case are 20 nm. The synthesized films can be used for the creation of semiconductor-metal micro- and nanostructures for photocatalytic water splitting. Such films can be also applied in chemical sensors and biosensors for surface enhancement of Raman scattering.


Keywords: morphology, structure, porous film, silver, copper, substitution reaction

Acknowledgements. This work was financially supported by the Russian Science Foundation (Project No. 20-19-00559). SEM characterization were performed using equipment owned by the Federal Joint Research Center “Material Science and Characterization in Advanced Technology” with financial support by Ministry of Education and Science of the Russian Federation.

References
  1. Stolarczyk J.K., Bhattacharyya S., Polavarapu L., Feldmann J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catalysis, 2018, vol. 8, no. 4, pp. 3602–3635. https://doi.org/10.1021/acscatal.8b00791
  2. Han Z., Qiu F., Eisenberg R., Holland P.L., Krauss T.D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science, 2012, vol. 338, no. 6112, pp. 1321–1324. https://doi.org/10.1126/science.1227775
  3. Ben-Shahar Y., Scotognella F., Kriegel I., Moretti L., Cerullo G., Rabani E., Banin U. Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nature Communications, 2016, vol. 7, pp. 10413. https://doi.org/10.1038/ncomms10413
  4. Wu K., Lian T. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chemical Society Reviews, 2016, vol. 45, no. 14, pp. 3781–3810. https://doi.org/10.1039/c5cs00472a
  5. Lang X.Y., Chen L.Y., Guan P.F., Fujita T., Chen M.W. Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios. Applied Physics Letters, 2009, vol. 94, no. 21, pp. 213109. https://doi.org/10.1063/1.3143628
  6. Jia Y., Ryckman J.D., Ciesielski P.N., Escobar C.A., Jennings G.K., Weiss S.M. Patterned nanoporous gold as an effective SERS template. Nanotechnology, 2011, vol. 22, no. 29, pp. 295302. https://doi.org/10.1088/0957-4484/22/29/295302
  7. Qiu H., Zhang Z., Huang X., Qu Y. Dealloying Ag-Al alloy to prepare nanoporous silver as a substrate for surface-enhanced raman scattering: Effects of structural evolution and surface modification. ChemPhysChem, 2011, vol. 12, no. 11, pp. 2118–2123. https://doi.org/10.1002/cphc.201100205
  8. Ma C., Trujillo M.J., Camden J.P. Nanoporous silver film fabricated by oxygen plasma: A facile approach for SERS substrates. ACS Applied Materials & Interfaces, 2016, vol. 8, no. 36, pp. 23978–23984. https://doi.org/10.1021/acsami.6b08191
  9. Jiang R., Xu W., Wang Y., Yu S. Tunable porous silver nanostructures for efficient surface-enhanced Raman scattering detection of trace pesticide residues. New Journal of Chemistry, 2018, vol. 42, no. 21, pp. 17750–17755. https://doi.org/10.1039/C8NJ04060E
  10. Pshenova A.S., Sidorov A.I., Antropova T.V., Nashchekin A.V. Luminescence enhancement and SERS by self-assembled plasmonic silver nanostructures in nanoporous glasses. Plasmonics, 2019, vol. 14, no. 1, pp. 125–131. https://doi.org/10.1007/s11468-018-0784-5
  11. Strelchuk V.V., Kolomys O.F., Golichenko B.O., Boyko M.I., Kaganovich E.B., Krishchenko I.M., Kravchenko S.O., Lytvyn O.S., Manoilov E.G., Nasieka Iu.M. Micro-Raman study of nanocomposite porous films with silver nanoparticles prepared using pulsed laser deposition. Semiconductor Physics, Quantum Electronics & Optoelectronic, 2015, vol. 18, no. 1, pp. 46–52. https://doi.org/10.15407/spqeo18.01.046
  12. Stockman M.I. Electromagnetic theory of SERS. Topics in Applied Physics, 2006, vol. 103, pp. 47–65. https://doi.org/10.1007/3-540-33567-6_3
  13. Komissarenko F.E., Mukhin I.S., Golubok A.O., Nikonorov N.V., Prosnikov M.A., Sidorov A.I. Effect of electron beam irradiation on thin metal films on glass surfaces in a submicrometer scale. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2016, vol. 15, no. 1, pp. 013502. https://doi.org/10.1117/1.JMM.15.1.013502
  14. Choi S., Dickson R.M., Yu J. Developing luminescent silver nanodots for biological applications. Chemical Society Reviews, 2012, vol. 41, no. 5, pp. 1867–1891. https://doi.org/10.1039/c1cs15226b
  15. Arnob M.M.P., Artur C., Misbah I., Mubeen S., Shih W.C. 10×-enhanced heterogeneous nanocatalysis on a nanoporous gold disk array with high-density hot spots. ACS Applied Materials and Interfaces, 2019, vol. 11, no. 14, pp. 13499–13506. https://doi.org/10.1021/acsami.8b19914
  16. Shen Z., O’Carroll D.M. Nanoporous silver thin films: multifunctional platforms for influencing chain morphology and optical properties of conjugated polymers. Advanced Functional Materials, 2015, vol. 25, no. 22, pp. 3302–3313. https://doi.org/10.1002/adfm.201500456
  17. Koya A.N., Zhu X., Ohannesian N., Yanik A.A., Alabastri A., Zaccaria R.P., Shih R. K.W.-C., Garoli D. Nanoporous metals: From plasmonic properties to applications in enhanced spectroscopy and photocatalysis. ACS Nano, 2021, vol. 15, no. 4, pp. 6038–6060. https://doi.org/10.1021/acsnano.0c10945
  18. Ron R., Haleva E., Salomon A. Nanoporous metallic networks: fabrication, optical properties, and applications. Advanced Materials, 2018, vol. 30, no. 41, pp. 1706755. https://doi.org/10.1002/adma.201706755
  19. Feder J. Fractals. New York, Springer Science+Business, 1988, XXVI, 284 p. https://doi.org/10.1007/978-1-4899-2124-6


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика