doi: 10.17586/2226-1494-2021-21-5-774-784


A study of the influence of the base thickness on photoelectric parameters of silicon solar cells with the new TCAD algorithms 

M. K. Abduvohidov, R. Aliev, J. Gulomov


Read the full article  ';
Article in English

For citation:
Abduvohidov M.K., Aliev R., Gulomov J. A study of the influence of the base thickness on photoelectric parameters of silicon solar cells with the new TCAD algorithms. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 5, pp. 774–784. doi: 10.17586/2226-1494-2021-21-5-774-784


Abstract
he Sentaurus TCAD software package is widely used in the modeling of semiconductor optoelectronic devices. The main part of simulating solar elements is creating a correct geometric model. A geometric model can be built using the SDE module in two different ways, i.e. by writing code or using standard shapes in a graphical environment. Creating complex structures using simple shapes is time-consuming and labour intensive. Therefore, this paper provides data on how to develop algorithms using geometric models of complex structural solar cells. A universal algorithm has been developed for creating a geometric model of solar cells with a sinusoidal p-n junction and a rear multiple structure. Using these algorithms, it is possible to create geometric models of various solar cells from simple to complex structures. By applying this algorithm, the authors studied the dependence of photoelectric parameters of the p-n and n-p junction silicon solar cells on their thickness in order to find the optimum thickness for both structures. It has been found, that the optimum thickness was equal to 256 μm for p-n junction and 75 μm for n-p junction silicon solar cell. The maximum efficiency of p-n junction silicon solar cell is 1.4 times greater than that of n-p junction solar cell in their optimum thickness.

Keywords: Sentaurus TCAD, SDE, structure, algorithm, modeling, solar cell, silicon, junction, thickness

Acknowledgements. The authors are grateful to the staff of the Renewable Energy Sources Laboratory at Andijan State University for their close assistance in preparing this article.

References
1. Sentaurus™ Device User Guide. Version O-2018.06, June 2018.
2. Indrishenok V.I., Pevtcov E.F. Foundations of Process and Device Simulation in Sentaurus TCAD. Moscow, MIREA Publ., 2018, 140 p. (in Russian)
3. Aliev R., Gulomov J., Abduvohidov M., Aliev S., Ziyoitdinov Z., Yuldasheva N.  Stimulation of photoactive absorption of sunlight in thin layers of silicon structures by metal nanoparticles. Applied Solar Energy, 2020, vol. 56, no. 5, pp. 364–370. https://doi.org/10.3103/S0003701X20050035
4. Gulomov J., Aliev R., Mirzaalimov A., Mirzaalimov N., Kakhkhorov J., Rashidov B., Temirov S. Studying the effect of light incidence angle on photoelectric parameters of solar cells by simulation. International Journal of Renewable Energy Development, 2021, vol. 10, no. 4, pp. 731–736. https://doi.org/10.14710/ijred.2021.36277
5. Juraeva Z. Overview analysis of the main types of solar сells and revealing ways to improve the efficiency and use of solar cells. Universum: tekhnicheskie nauki, 2018, no. 10(55), pp. 66–68. (in Russian)
6. Zaddeh V.V., Pinov A.B., Timerbulatov T.R., Timerbulatov V.T., Tokarev V.E. Structure and method of making silicon photoconverter with two-sided photosensitivity. Paternt RU 2432639. 2011. (in Russian)
7. Aliev R., Gulomov J.J., Mirzaalimov N.A. et.al. Semiconductor photoelectric converter. Patent application no. 20200281. 24.12.2020. (in Russian)
8. Mulligan W.P., Cudzinovic M.J., Pass T., Smith D., Kaminar N., McIntosh K., Swanson R.M. Solar cell and method of manufacture. Patent US 7897867, 2011.
9. Strebkov D.S. Matrix Solar Cells. Vol. 3. Moscow, VIESH Publ., 2010, 348 p. (in Russian)
10. Tiedje T., Yablonovich E., Cody G.D., Brooks B.G. Limiting efficiency of silicon solar cells. IEEE Transactions on Electron Devices, 1984, vol. 31, no. 5, pp. 711–716.  https://doi.org/10.1109/T-ED.1984.21594
11. Plá J.C., Tamasi M.J.L., Bolzi C.G., Venier G.L., Durán J.C. Short circuit current vs cell thickness in solar cells under rear illumination: a direct evaluation of the diffusion length. Solid-State Electronics, 2000, vol. 44, no. 4, pp. 719–724. https://doi.org/10.1016/s0038-1101(99)00311-1
12. Sachenko A.V., Kostylyov V.P., Bobyl A.V., Vlasyuk V.N., Sokolovskyi I.O., Konoplev G.A., Terukov E.I., Shvarts M.Z., Evstigneev M. The effect of base thickness on photoconversion efficiency in textured silicon-based solar cells. Technical Physics Letters, 2018, vol. 44, no. 10, pp. 873–876. https://doi.org/10.1134/S1063785018100139
13. Oschlies A., Godby R.W., Needs R.J. First-principles self-energy calculations of carrier-induced band-gap narrowing in silicon. Physical Review B, 1992, vol. 45, no. 23, pp. 13741–13744. https://doi.org/10.1103/physrevb.45.13741
14. Polman A., Atwater H.A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 2012, vol. 11, no. 3, pp. 174–177. https://doi.org/10.1038/nmat3263
15. Zaki A.A., El-Amin A.A. Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell. Optics and Laser Technology, 2017, vol. 97, pp. 71–76. https://doi.org/10.1016/j.optlastec.2017.06.009
16. Terheiden B., Ballmann T., Horbelt R., Schiele Y., Seren S., Ebser J., Hahn G., Mertens V., Koentopp M.B., Scherff M., Müller J.W., Holman Z.C., Descoeudres A., De Wolf S., de Nicolas S.M., Geissbuehler J., Ballif C., Weber B., Saint-Cast P., Rauer M., Schmiga C., Glunz S.W., Morrison D.J., Devenport S., Antonelli D., Busto C., Grasso F., Ferrazza F., Tonelli E., Oswald W. Manufacturing 100-µm-thick silicon solar cells with efficiencies greater than 20% in a pilot production line. Physica Status Solidi (a), 2015, vol. 212, no. 1, pp. 13–24. https://doi.org/10.1002/pssa.201431241
17. Vitorino M.A., Hartmann L.V., Lima A.M.N., Corrêa M.B.R. Using the model of the solar cell for determining the maximum power point of photovoltaic systems. Proc. European Conference on Power Electronics and Applications, 2007, pp. 4417684. https://doi.org/10.1109/EPE.2007.4417684
18. Andreani L.C., Bozzola A., Kowalczewski P., Liscidini M., Redorici L. Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 2019, vol. 4, no. 1, pp. 1548305. https://doi.org/10.1080/23746149.2018.1548305
19. Petermann J.H., Zielke D., Schmidt J., Haase F., Rojas E.G., Brendel R. 19%-efficient and 43 µm-thick crystalline Si solar cell from layer transfer using porous silicon. Progress in Photovoltaics: Research and Applications, 2012, vol. 20, no. 1, pp. 1–5. https://doi.org/10.1002/pip.1129
20. Tool C.J.J., Burgers A.R., Manshanden P., Weeber A.W., van Straaten B.H.M. Influence of wafer thickness on the performance of multicrystalline Si solar cells: an experimental study. Progress in Photovoltaics: Research and Applications, 2002, vol. 10, no. 4, pp. 279–291. https://doi.org/10.1002/pip.421


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика