doi: 10.17586/2226-1494-2021-21-6-872-879

Impact of magnesium oxide concentration and yttrium-aluminum garnet stoichiometry deviation on the microstructure and optical transmission of YAG-based ceramics

F. F. Malyavin, A. A. Kravtsov, V. A. Tarala, M. S. Nikova, I. S. Chikulina, D. S. Vakalov, V. A. Lapin, D. S. Kuleshov, E. V. Medyanik

Read the full article  ';
Article in Russian

For citation:
Malyavin F.F., Kravtsov A.A., Tarala V.A., Nikova M.S., Chikulina I.S., Vakalov D.S., Lapin V.A., Kuleshov D.S., Medyanik E.V. Impact of magnesium oxide concentration and yttrium-aluminum garnet stoichiometry deviation on the microstructure and optical transmission of YAG-based ceramics. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 6, pp. 872–879 (in Russian). doi: 10.17586/2226-1494-2021-21-6-872-879


The paper investigates the effect of the magnesium oxide concentration on the ceramics’ microstructure and optical transmittance under conditions of excess Al3+ (4.8 mol.%) and Y3+ (2.9 mol.%) cations in the garnet structure, as well as the stoichiometric ratio Y3+/Al3+ = 3/5. Samples of optical ceramics were fabricated by vacuum sintering of compacts obtained from ceramic powders. Precursor powders with different ratios of Y3+/Al3+ cations were synthesized by the method of two-stage coprecipitation. Magnesium oxide was used as a sintering additive in concentrations from 0 to 0.2 wt.%. The microstructure and optical properties of the obtained samples were studied using scanning electron microscopy, energy dispersive X-ray spectroscopy and spectrophotometry techniques. It is shown that with the addition of magnesium oxide in a concentration of 0–0.2 wt.%, the stoichiometry of yttrium-aluminum garnet significantly affects ceramics’ optical transmittance and microstructure. Samples of optical ceramics of yttrium-aluminum garnet with a light transmission coefficient of more than 70 % in the visible and near-infrared range were obtained.

Keywords: optical ceramics, yttrium-aluminum garnet, stoichiometry, microstructure, vacuum sintering, average grain size

Acknowledgements. This work was financially supported by the Council for Grants of the President of the Russian Federation (project No. MK-3786.2021.1.3). The work was carried out using the equipment of the Center for Collective Use of the North-Caucasus Federal University with financial support from the Ministry of Education and Science of Russia, unique project identifier RF ---- 2296.61321X0029 (agreement No. 075-15-2021-687).

  1. Liu Q., Liu J., Li J., Ivanov M., Medvedev A., Zeng Y., Jin G., Ba X., Liu W., Jiang B., Pan Y., Guo J. Solid-state reactive sintering of YAG transparent ceramics for optical applications. Journal of Alloys and Compounds, 2014, vol. 616, pp. 81–88.
  2. Yagi H., Yanagitani T., Numazawa T., Ueda K. The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature. Ceramics International, 2007, vol. 33, no. 5, pp. 711–714.
  3. Yang H., Zhang J., Luo D., Lin H., Shen D., Tang D. Novel transparent ceramics for solid-state lasers. High Power Laser Science And Engineering, 2013, vol. 1, no. 3–4, pp. 138–147.
  4. Yanagida T., Takahashi H., Ito T., Kasama D., Enoto T., Sato M., Hirakuri S., Kokubun M., Makishima K., Yanagitani T., Yagi H., Shigeta T., Ito T. Evaluation of properties of YAG (Ce) ceramic scintillators. IEEE Transactions on Nuclear Science, 2005, vol. 52, no. 5, part 3, pp. 1836–1841.
  5. Taira T. Ceramic YAG lasers. Comptes Rendus Physique, 2007, vol. 8, no. 2, pp. 138–152.
  6. Ikesue A., Aung Y.L. Ceramic laser materials. Nature Photonics, 2008, vol. 2, no. 12, pp. 721–727.
  7. Ikesue A., Aung Y.L., Taira T., Kamimura T., Yoshida K., Messing G.L. Progress in ceramic lasers. Annual Review of Materials Research, 2006, vol. 36, pp. 397–429.
  8. Mezeix L., Green D.J. Comparison of the mechanical properties of single crystal and polycrystalline yttrium aluminum garnet. International Journal of Applied Ceramic Technology, 2006, vol. 3, no. 2, pp. 166–176.
  9. Lukin E.S. Modern high-density oxide ceramics with a controlled microstructure. Part II. Substantiation of the principles for choosing modifying additives that affect the degree of sintering of oxide ceramics. Refractories and Industrial Ceramics, 1996, vol. 5-6, pp. 143–150.
  10. Stevenson A.J., Li X., Martinez M.A., Anderson J.M., Suchy D.L., Kupp E.R., Dickey E.C., Mueller K.T., Messing G.L., Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics. Journal of the American Ceramic Society, 2011, vol. 94, no. 5, pp. 1380–1387.
  11. Lu Z., Lu T., Wei N., Ma B., Zhang W., Li F., Guan Y. Novel phenomenon on valence unvariation of doping ion in Yb:YAG transparent ceramics using MgO additives. Journal of Wuhan University of Technology-Materials Science Edition, 2013, vol. 28, no. 2, pp. 320–324.
  12. Yang H., Qin X., Zhang J., Ma J., Tang D., Wang S., Zhang Q. The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic. Optical Materials, 2012, vol. 34, no. 6, pp. 940–943.
  13. Zhou T., Zhang L., Yang H., Qiao X., Liu P., Tang D., Zhang J. Effects of sintering aids on the transparency and conversion efficiency of Cr4+ Ions in Cr: YAG transparent ceramics. Journal of the American Ceramic Society, 2015, vol. 98, no. 8, pp. 2459–2464.
  14. Zhou T., Zhang L., Wei S., Wang L., Yang H., Fu Z., Chen H., Selim F.A., Zhang Q. MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution. Journal of the European Ceramic Society, 2018, vol. 38, no. 2, pp. 687–693.
  15. Mohammadi F., Mirzaee O., Tajally M. Influence of TEOS and MgO addition on slurry rheological, optical, and microstructure properties of YAG transparent ceramic. Optical Materials, 2018, vol. 85, pp. 174–182.
  16. Kravtsov A.A., Nikova M.S., Vakalov D.S., Tarala V.A., Chikulina I.S., Malyavin F.F., Chapura O.M., Krandievsky S.O., Kuleshov D.S., Lapin V.A. Combined effect of MgO sintering additive and stoichiometry deviation on YAG crystal lattice defects. Ceramics International, 2019, vol. 45, no. 16, pp. 20178–20188.
  17. Kravtsov A.A., Chikulina I.S., Tarala V.A., Evtushenko E.A., Shama M.S., Tarala L.V., Malyavin F.F., Vakalov D.S., Lapin V.A., Kuleshov D.S. Novel synthesis of low-agglomerated YAG:Yb ceramic nanopowders by two-stage precipitation with the use of hexamine. Ceramics International, 2019, vol. 45, no. 1, pp. 1273–1282.
  18. Malyavin F.F., Tarala V.A., Kuznetsov S.V., Kravtsov A.A., Chikulina I.S., Shama M.S., Medyanik E.V., Ziryanov V.S., Evtushenko E.A., Vakalov D.S., Lapin V.A., Kuleshov D.S., Tarala L.V., Mitrofanenko L.M. Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics. Ceramics International, 2019, vol. 45, no. 4, pp. 4418–4423.
  19. Dai J., Pan Y., Chen H., Xie T., Kou H., Li J. Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders: The influence of ammonium hydrogen carbonate to metal ions molar ratio. Ceramics International, 2017, vol. 43, no. 16, pp. 14457–14463.
  20. Mendelson M.I. Average grain size in polycrystalline ceramics. Journal of the American Ceramic Society, 1969, vol. 52, no. 8, pp. 443–446.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.