doi: 10.17586/2226-1494-2022-22-1-206-216


A comparative analysis of computational intelligence algorithms for estimation of LTE channels
 

S. Pathan, A. Noonia, M. Tamboli, S. Pathak


Read the full article  ';
Article in English

For citation:
Pathan S., Noonia A., Tamboli M., Pathak S. A comparative analysis of computational intelligence algorithms for estimation of LTE channels. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 1, pp. 206–216. doi: 10.17586/2226-1494-2022-22-1-206-216


Abstract
Precise modelling and accurate estimation of long-term evolution (LTE) channels are essential for numerous applications like video streaming, efficient use of bandwidth and utilization of power. This deals with the fact that data traffic is increasing continuously with advances in Internet of things. Previous works were focused mainly on designing models to estimate channel using traditional minimum mean square error (MMSE) and least squares (LS) algorithms. The proposed model enhances LTE channel estimation. The designed model combines LS and MMSE methods using Taguchi genetic (GE) and Particle Swarm Intelligence (PSO) algorithms. We consider LTE operating in 5.8 GHz range. Pilot signals are sent randomly along with data to obtain information about the channel. They help to decode a signal in a receiver and estimate LS and MMSE combined with Taguchi GA and PSO, respectively. CI-based model performance was calculated according to the bit error rate (BER), signal-to-noise ratio and mean square error. The proposed model achieved the desired gain of 2.4 dB and 5.4 dB according to BER as compared to MMSE and LS algorithms, respectively.

Keywords: genetic algorithm (GA), particle swarm intelligence (PSO), long term evolution (LTE), minimum mean square error (MMSE), least squares (LS)

Acknowledgements. We thank Amity School of Engineering & Technology of Amity University, Jaipur, India for providing material and resources for our study, we also thank Anjuman-I-Islam’s Kalsekar Technical Campus of Mumbai University Navi Mumbai, India for providing laboratory to do research.

References
  1. Bobde S., Phalnikar R. Software restructuring models for object oriented programming languages using the fuzzy based clustering algorithm. Scientific and technical journal of information technologies, mechanics and optics, 2021, vol. 21,no. 5,pp 738–747. https://doi.org/10.17586/2226-1494-2021-21-5-738-747
  2. Bothra S.K.,Singhal S.Nature-inspired metaheuristic scheduling algorithms in cloud: a systematic review.Scientific and technical journal of information technologies, mechanics and optics,2021, vol. 21,no. 4,pp. 463–472. https://doi.org/10.17586/2226-1494-2021-21-4-463-472
  3. Farrokhi F.R., Lozano A., Foschini G.J., Valenzuela R.A. Spectral efficiency of FDMA/TDMA wireless systems with transmit and receive antenna arrays. IEEE Transactions on Wireless Communications, 2002, vol. 1, no. 4, pp. 591–599. https://doi.org/10.1109/TWC.2002.804078
  4. Balanis C. Antenna theory: Analysis and design. 4rd ed. New York, John Wiley & Sons, 2016, pp. 900–908.
  5. Durrani S., Bialkowski M.E. Effect of mutual coupling on the interference rejection capabilities of linear and circular arrays in CDMA systems. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 4, pp. 1130–1134. https://doi.org/10.1109/TAP.2004.825640
  6. Piazza D., Kirsch N.J., Forenza A., Heath R.W., Dandekar K.R. Design and evaluation of a reconfigurable antenna array for MIMO systems. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 3, pp. 869–881. https://doi.org/10.1109/TAP.2008.916908
  7. Lozano A., Tulino A.M. Capacity of multiple-transmit multiple-receive antenna architectures. IEEE Transactions on Information Theory, 2002, vol. 48, no. 12, pp. 3117–3127. https://doi.org/10.1109/TIT.2002.805084
  8. Oyman Ö., Nabar R.U., Bölcskei H., Paulraj A.J. Tight lower bounds on the ergodic capacity of Rayleigh fading MIMO channels. Proc. of the Conference Record / IEEE Global Telecommunications Conference. V. 2, 2002, pp. 1172–1176. https://doi.org/10.1109/GLOCOM.2002.1188380
  9. Du J., Li Y. Optimization of antenna configuration for MIMO systems. IEEE Transactions on Communications, 2005, vol. 53, no. 9, pp. 1451–1454. https://doi.org/10.1109/TCOMM.2005.855002
  10. Waheed U.A., Kishore D.V. Uplink spatial fading correlation of MIMO channel. IEEE Vehicular Technology Conference, 2003, vol. 58, no. 1, pp. 94–98. https://doi.org/10.1109/VETECF.2003.1284985
  11. Tsai J.-A., Woerner B.D. The fading correlation function of a circular antenna array in mobile radio environment. Proc. of the IEEE Global Telecommunications Conference. V. 5, 2001, pp. 3232–3236. https://doi.org/10.1109/GLOCOM.2001.966023
  12. Li X., Nie Z.-P. Spatial fading correlation of circular antenna arrays with Laplacian PAS in MIMO channels. Proc. of the IEEE Antennas and Propagation Society International Symposium. V. 4, 2004, pp. 3697–3700. https://doi.org/10.1109/APS.2004.1330149
  13. Recioui A., Bentarzi H. Genetic algorithm based MIMO capacity enhancement in spatially correlated channels including mutual coupling. Wireless Personal Communications, 2012, vol. 63, no. 3, pp. 689–701. https://doi.org/10.1007/s11277-010-0159-5
  14. Recioui A., Azrar A. Use of genetic algorithms in linear and planar array synthesis based on Schelkunoff method. Microwave and Optical Technology Letters, 2007, vol. 49, no. 7, pp. 1619–1623. https://doi.org/0.1002/mop.22510
  15. Montgomery D. C. Design and Analysis of Experiments. New York, Wiley, 1991, pp. 28–39.
  16. Ross P.J. Taguchi Techniques for Quality Engineering. McGraw-Hill. 2013, pp. 43–52.
  17. Weng W.C., Yang F., Elsherbeni A.Z. Linear antenna array synthesis using Taguchi’s method: A novel optimization technique in electromagnetic. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, pp. 723–730. https://doi.org/10.1109/TAP.2007.891548
  18. Wu Y. Taguchi Methods for Robust Design. ASME Press, 2012.
  19. Gen M., Cheng R. Genetic algorithms and engineering design. Wiley, 2000, pp. 29–37.
  20. Khlifi A., Bouallegue R., Performance analysis of LS and LMMSE channel estimation techniques for LTE downlink systems. International Journal of Wireless & Mobile Networks (IJWMN), 2011, vol. 3, no. 5, pp. 141–149. https://doi.org/10.5121/ijwmn.2011.3511


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика