doi: 10.17586/2226-1494-2022-22-3-433-441


Influence of the ratio of the intensities of the reference and object waves on the intensity distribution in the holographic field

S. N. Koreshev, S. O. Starovoitov


Read the full article  ';
Article in Russian

For citation:
Koreshev S.N., Starovoitov S.O. Influence of the ratio of the intensities of the reference and object waves on the intensity distribution in the holographic field. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 3, pp. 433–441 (in Russian). doi: 10.17586/2226-1494-2022-22-3-433-441


Abstract
The results of the research focused on the reference and object beam intensity ratio effect on the transmittance of computer-generated and analog holograms are presented. Particular attention is paid to the hologram synthesis mode in which the intensity of the object beam exceeds the intensity of the reference beam (overmodulation mode). The study is relevant in cases where computer-generated holograms are used in extreme ultraviolet projection photolithography. Mathematical modeling of the physical processes of recording and reconstructing holograms has been performed. The characteristic size of the binary test object was 80 × 80 nm, the radiation wavelength was 13.5 nm, the hologram pixel size was 20 × 20 nm, the distance between the object and hologram planes was 20.4 μm, and the incidence angle of the plane reference wave was 14°42′. Synthesis and reconstruction of holograms were carried out in an overmodulation mode, with different beam paths in the object beam. It is shown that the computer-generated holograms, unless binarized, are always displayed and reconstructed as quantized holograms with a quantization interval depending on the parameters of the synthesis scheme. It has been established that the influence of the overmodulation mode on the quality of the reconstructed image when using computer-generated holograms will be much less than in the case of using analog holograms, but will also be determined by the dynamic range of the object beam intensity in the hologram synthesis plane. It is noted that the influence of overmodulation mode is minimal if an object beam converging at the center of the hologram is used during synthesis. The choice of the adequate quantization interval and the ratio of the intensities of the reference and object beams will ensure high quality of the reconstructed image when using computer-generated Fresnel holograms in extreme ultraviolet projection photolithography.

Keywords: holography, computer-generated holograms, hologram reconstruction, photolithography, halftone holograms, intensity ratio between object and reference beam, overmodulation mode

Acknowledgements. The study is funded by RPMA grant of School of Physics and Engineering of ITMO University.

References
  1. Maiden A., McWilliam R., Purvis A., Johnson S., Williams G.L., Seed N.L., Ivey P.A. Nonplanar photolithography with computer-generated holograms. Optics Letters, 2005, vol. 30, no. 11, pp. 1300–1302. https://doi.org/10.1364/OL.30.001300
  2. Naullenau P.P., Salmassi F., Cullikson E.M., Liddle J.A. Design and fabrication of a high‑efficiency extreme-ultraviolet binary phase-only computer-generated hologram. Applied Optics, 2007, vol. 46, no. 14, pp. 2581–2585. https://doi.org/10.1364/AO.46.002581
  3. Cheng Y.-C., Isoyan A., Wallace J., Khan M., Cerrina F. Extreme ultraviolet holographic lithography: Initial results. Applied Physics Letters, 2007, vol. 90, no. 2, pp. 023116. https://doi.org/10.1063/1.2430774
  4. Bay C., Hübner N., Freeman J., Wilkinson T. Maskless photolithography via holographic optical projection. Optics Letters, 2010, vol. 35, no. 13, pp. 2230–2232. https://doi.org/10.1364/OL.35.002230
  5. Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies. Moscow, Fizmatlit Publ., 2007, 416 p. (in Russian)
  6. Koreshev S.N., Smorodinov D.S., Frolova M.A. Method for increasing the depth of field of images of flat transparencies reconstructed using synthesized holograms. Journal of Optical Technology, 2018, vol. 85, no. 11, pp. 696–702. https://doi.org/10.1364/JOT.85.000696
  7. Jaroslavskij L.P., Merzljakov N.S. Methods of the Digital Holography. Moscow, Nauka, 1977, 192 p. (in Russian)
  8. Pan W. Multiplane imaging and depth-of-focus extending in digital holography by a single-shot digital hologram. Optics Communications, 2013, vol. 286, no. 1, pp. 117–122. https://doi.org/10.1016/j.optcom.2012.09.013
  9. Bianco V., Memmolo P., Leo M., Montresor S., Distante C., Paturzo M., Picart P., Javidi B., Ferraro P. Strategies for reducing speckle noise in digital holography. Light: Science & Applications, 2018, vol. 7, no. 1, pp. 48. https://doi.org/10.1038/s41377-018-0050-9
  10. Huang X., Jia Z., Zhou J., Yang J., Kasabov N. Speckle reduction of reconstructions of digital holograms using gamma-correction and filtering. IEEE Access, 2017, vol. 6, pp. 5227–5235. https://doi.org/10.1109/ACCESS.2017.2751540
  11. Castaneda R., Garcia-Sucerquia J., Doblas A. Speckle noise reduction in coherent imaging systems via hybrid median–mean filter. Optical Engineering, 2021, vol. 60, no. 12, pp. 123107. https://doi.org/10.1117/1.OE.60.12.123107
  12. Koreshev S.N., Smorodinov D.S., Nikanorov O.V., Gromov A.D. Intensity equalization for elements for binary-object images reconstructed using synthesized hologram projectors. Optics and Spectroscopy, 2013, vol. 114, no. 2, pp. 288–292. https://doi.org/10.1134/S0030400X13020136
  13. Collier R.J., Burckhardt C.B., Lin L.H. Optical Holography. New York, NY, Academic Press, 1971.
  14. Hariharan P. Basics of Holography. Cambridge University Press, 2002, 174 p.
  15. Jeong T.H. Basic principles and applications of holography. Fundamentals of Photonics, 2008, pp. 381–417. https://doi.org/10.1117/3.784938.ch10
  16. Seelamantula C.S., Pavillon N., Depeursinge C., Unser M. Zero-order-free image reconstruction in digital holographic microscopy. Proc. of the IEEE International Symposium on Biomedical Imaging: From Nano to Micro (ISBI), 2009, pp. 201–204. https://doi.org/10.1109/ISBI.2009.5193018
  17. Castañeda R., Hincapie D., Garcia-Sucerquia J. Experimental study of the effects of the ratio of intensities of the reference and object waves on the performance of off-axis digital holography. Optik, 2017, vol. 132, pp. 274–283. https://doi.org/10.1016/j.ijleo.2016.12.062
  18. Seelamantula C.S., Pavillon N., Depeursinge C., Unser M. Exact complex-wave reconstruction in digital holography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, vol. 28, no. 6, pp. 983–992. https://doi.org/10.1364/JOSAA.28.000983
  19. Su W.-C., Huang C.-Y., Chen J.-Y., Su W.-H. Effect of recording-beam ratio on diffraction efficiency of polarization holographic gratings in dye-doped liquid-crystal films. Optics Letters, 2010, vol. 35, no. 3, pp. 405–407. https://doi.org/10.1364/OL.35.000405
  20. Johnson S. Stephen Johnson on Digital Photography. USA, Sebastopol, CA, O’Reilly Media, Inc., 2006, 305 p.
  21. Koreshev S.N., Smorodinov D.S., Starovoitov S.O., Frolova M.A. Influence of the structure of the object beam on the quality of images reconstructed using a synthesized Fresnel hologram-projector. Journal of Optical Technology, 2020, vol. 87, no. 7, pp. 417–421. https://doi.org/10.1364/JOT.87.000417
  22. Koreshev S.N., Smorodinov D.S., Starovoitov S.O. Influence of computer-generated holograms synthesis method and phase distribution in the object plane on the quality of the reconstructed image. Computer Optics, 2020, vol. 44, no. 2, pp. 203–208. (in Russian). https://doi.org/10.18287/2412-6179-CO-613
  23. Koreshev S.N., Smorodinov D.S., Nikanorov O.V. Influence of the discreteness of synthetic and digital holograms on their imaging properties. Computer Optics, 2016, vol. 40, no. 6, pp. 793–801. (in Russian).https://doi.org/10.18287/2412-6179-2016-40-6-793-801
  24. Fu N., Liu Y., Ma X., Chen Z. EUV lithography: State-of-the-art review. Journal of Microelectronic Manufacturing, 2019, vol. 2, pp. 19020202. https://doi.org/10.33079/jomm.19020202
  25. Ezhova K.V. Image Modeling and Processing. St. Petersburg, NIU ITMO, 2011, 93 p. (in Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика