doi: 10.17586/2226-1494-2022-22-3-528-537


Cloud-based intelligent monitoring system to implement mask violation detection and alert simulation

V. Komal, M. Lalith, T. Arun Kumar, J. Jayashree, J. Vijayashree


Read the full article  ';
Article in English

For citation:
Komal Venugopal V., Lalith M., Arun Kumar T., Jayashree J., Vijayashree J. Cloud-based intelligent monitoring system to implement mask violation detection and alert simulation. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 3, pp. 528–537. doi: 10.17586/2226-1494-2022-22-3-528-537


Abstract
The importance of wearing a mask in public places came to light when the COVID-19 pandemic has started due to the coronavirus. To strictly control the spread of the virus, wearing a mask is mandatory to avoid getting the virus through others or spreading the virus to others if we are carrying it. Since it’s not possible to check each individual in public places whether he/she is wearing a mask, this paper proposed a face mask detection using Deep Learning (DL) and Convolutional Neural Network (CNN) techniques. A cloud-based approach that adopted DL is used to identify the persons violating the rules. The dataset used in the work is collected from various studies, such as Prajnasb/observations and Kaggle’s Face Mask Detection Dataset that contains images of people wearing and not wearing masks. The faces in the images will be detected and cropped with the help of a trained face detector which will be used for checking whether the face in the image is wearing a mask or not. Face mask detection is done with the help of CNN. The input image is fed into the CNN and the output is binary format, whether person wearing or not wearing a mask. The work uses Max Pooling and Average Pooling layers of CNN. The outcome of the work shows that the proposed method achieves 98 % of accuracy using Max Pooling which is better than the currently available works.

Keywords: convolutional neural networks, CNN, PyTorch, deep learning, cloud

References
  1. Nagrath P., Jain R., Madan A., Arora R., Kataria P., Hemanth J. SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2. Sustainable Cities and Society, 2021, vol. 66, pp. 102692. https://doi.org/10.1016/j.scs.2020.102692
  2. Matrajt L., Leung T. Evaluating the effectiveness of social distancing interventions to delay or flatten the epidemic curve of coronavirus disease. Emerging Infectious Diseases, 2020, vol. 26, no. 8, pp. 1740–1748. https://doi.org/10.3201/eid2608.201093
  3. Fu C., Liu W., Ranga A., Tyagi A., Berg A. DSSD: deconvolutional single shot detector model. arXiv, 2017, arXiv:1701.06659. https://doi.org/10.48550/arXiv.1701.06659
  4. Lin T.Y., Dollár P., Girshick R., He K., Hariharan B., Belongie S. Future pyramid networks for object detection. Proc. of the 30th IEEE Conference Proceedings on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 936–944. https://doi.org/10.1109/CVPR.2017.106
  5. Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. Proc. of the 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474
  6. Farfade S.S., Saberian M.J., Li L. Multi-view face detection using deep convolutional neural networks. Proc. of the 5th ACM International Conference on Multimedia Retrieval (ICMR), 2015, pp. 643–650. https://doi.org/10.1145/2671188.2749408
  7. Chen S., Zhang C., Dong M., Le J., Rao M. Using ranking-CNN for age estimation. Proc. of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 742–751. https://doi.org/10.1109/CVPR.2017.86
  8. Hinton G., Vinyals O., Dean J. Distilling the knowledge in a neural network. arXiv, 2015, arXiv:1503.02531. https://doi.org/10.48550/arXiv.1503.02531
  9. Bandaru A., Bhadani A., Sinha A. A facemask detector using machine learning and image processing techniques. Engineering Science and Technology an International Journal, 2020.
  10. Gurav O. Face Mask Detection Dataset. 2020. Available at: https://www.kaggle.com/omkargurav/face-mask-dataset(accessed: 25.12.2021)
  11. Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, no. 6, pp. 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031.
  12. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features. Proc. of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). V. 1, 2001, pp. I511–I518. https://doi.org/10.1109/CVPR.2001.990517
  13. Oro D., Fernández C., Saeta J.R., Martorell X., Hernando J. Real-time GPU-based face detection in HD video sequences. Proc. of the IEEE International Conference on Computer Vision Workshops (ICCV), 2011, pp. 530–537. https://doi.org/10.1109/ICCVW.2011.6130288
  14. Glass R.J., Glass L.M., Beyeler W.E., Min H.J. Targeted social distancing designs for pandemic influenza. Emerging Infectious Diseases, 2006, vol. 12, no. 11, pp. 1671–1681. https://doi.org/10.3201/eid1211.060255
  15. Masita K.L., Hasan A.N., Satyakama P. Pedestrian detection using R-CNN object detector. IEEE Latin American Conference on Computational Intelligence (LA-CCI), 2018, pp. 8625210. https://doi.org/10.1109/LA-CCI.2018.8625210
  16. Girshick R. Fast R-CNN. Proc. of the 15th IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169
  17. Zhu X., Ramanan D. Face detection, pose estimation, and landmark localization in the wild. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2879–2886. https://doi.org/10.1109/CVPR.2012.6248014
  18. Howard A.G., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., Andreetto M., Adam H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv, arXiv:1704.04861, 2017. https://doi.org/10.48550/arXiv.1704.04861
  19. Nagrath P., Jain R., Madan A., Arora R., Kataria P., Hemanth J. SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2. Sustainable Cities and Society, 2021, vol. 66, pp. 102692. https://doi.org/10.1016/j.scs.2020.102692
  20. Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press, 2016, 800 p.
  21. Jiang M., Fan X., Yan H. Retina Mask: A Face Mask detector. arXiv, 2020, arXiv:2005.03950v2. https://doi.org/10.48550/arXiv.2005.03950
  22. Jiang X., Gao T., Zhu Z., Zhao Y. Real-Time Face Mask Detection Method Based on YOLOv3. Electronics, 2021, vol. 10, no. 7, pp. 837. https://doi.org/10.3390/electronics10070837
  23. Liu S., Again S.S. COVID-19 face mask detection in a crowd using multi-model based on YOLOv3 and hand-crafted features. Proceedings of SPIE, 2021, vol. 11734, pp. 117340–117340. https://doi.org/10.1117/12.2586984
  24. Sen S., Sawant K. Face mask detection for covid_19 pandemic using pytorch in deep learning. IOP Conference Series: Materials Science and Engineering, 2021, vol. 1070, pp. 012061. https://doi.org/10.1088/1757-899X/1070/1/012061
  25. Sethi S., Kathuria M., Kaushik T. A real-time integrated face mask detector to curtail spread of coronavirus. Computer Modeling in Engineering & Sciences, 2021, vol. 127, no. 2, pp. 389–409. https://doi.org/1032604/cmes.2021.014478
  26. Srivastava P., Khan R. A review paper on cloud computing. International Journal of Advanced Research in Computer Science and Software Engineering, 2018, vol. 8, no. 6, pp. 17. https://doi.org/10.23956/ijarcsse.v8i6.711
  27. Susanto S., Putra F.A., Analia R., Suciningtyas I.K.L.N. The face mask detection for preventing the spread of COVID-19 at Politeknik Negeri Batam. Proc. of the 3rd International Conference on Applied Engineering (ICAE), 2020, pp. 9350556. https://doi.org/10.1109/ICAE50557.2020.9350556
  28. Wang Z., Wang G., Huang B., Xiong Z., Hong Q., Wu H., Yi P., Jiang K., Wang N., Pei Y., Chen H., Miao Y., Huang Z., Liang J. Masked face recognition dataset and application. arXiv, 2020, arXiv:2003.09093v2. https://doi.org/10.48550/arXiv.2003.09093


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика