Menu
Publications
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief
Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2022-22-4-659-665
Fiber-optic amplitude bend direction and magnitude sensor
Read the full article ';
Article in Russian
For citation:
Abstract
For citation:
Dmitriev A.A., Grebnev K.V., Smirnov D.S., Varzhel S.V. Fiber-optic amplitude bend direction and magnitude sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 4, pp. 659–665 (in Russian). doi: 10.17586/2226-1494-2022-22-4-659-665
Abstract
A variant of the implementation of a fiber-optic sensor for the direction and magnitude of the bend is proposed. Unlike existing spectral measuring systems, the solution under consideration involves the use of an amplitude polling technique which makes it possible to increase the speed of the sensor when using simpler and more affordable components. A sensitive element based on special diffraction structures consisting of pairs of chirped fiber Bragg gratings has been studied. The sensing elements are mounted on a tooling — a steel rod subjected to bending. The ability of the sensor to determine the magnitude and direction of bending in the deviation range from 0 to 30 mm was demonstrated with a standard deviation of the measured values from the real values of 0.536 mm. This measurement result is achieved by processing data obtained from three measuring devices and by the neural network with a hidden layer of 10 neurons and the sigmoid as the activation function. The research results are essential for modern monitoring systems. The implementation of the direction and magnitude of the bend sensor in the format of a fiber-optic device allows you to overcome the limitations of piezoelectric sensors, due to high noise immunity and resistance to environmental influences. The proposed technological solution makes it possible to avoid the spectral measurement technique that has become widely used in fiber-optic sensor systems. The use of an amplitude sensor for the magnitude and direction of bending will allow its use in devices where there is a need for precise positioning of control elements or structural components subjected to bending. Also, due to the measurement of the desired bending effect by estimating the optical power of the signal, the design of the sensor does not require the presence of a complex measuring device, and the sensor’s performance can be ensured using a cascade of inexpensive, but at the same time high-speed and durable photodetectors.
Keywords: fiber Bragg grating, fiber optic sensor, bend direction and magnitude sensor
Acknowledgements. The work is financially supported by Priority 2030 Program.
References
Acknowledgements. The work is financially supported by Priority 2030 Program.
References
-
Annamdas V.G.M. Review on developments in fiber optical sensors and applications. International Journal of Materials Engineering, 2011, vol. 1, no. 1, pp. 1–16. https://doi.org/10.5923/j.ijme.20110101.01
-
Mihailov S.J. Fiber Bragg grating sensors for harsh environments. Sensors, 2012, vol. 12, no. 2, pp. 1898–1918. https://doi.org/10.3390/s120201898
-
Kersey A.D., Davis M.A., Patrick H.J., LeBlanc M., Koo K.P., Askins C.G., Putnam M.A., Friebele E.J. Fiber grating sensors. Journal of Lightwave Technology, 1997, vol. 15, no. 8, pp. 1442–1463. https://doi.org/10.1109/50.618377
-
Byron K.C., Sugden K., Bricheno T., Bennion I. Fabrication of chirped Bragg gratings in photosensitive fibre. Electronics Letters, 1993, vol. 29, no. 18, pp. 1659–1660. https://doi.org/10.1049/el:19931104
-
Hill K.O., Bilodeau F., Malo B., Kitagawa T., Thériault S., Johnson D.C., Albert J., Takiguchi K. Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion. Optics Letters, 1994, vol. 19, no. 17, pp. 1314–1316. https://doi.org/10.1364/OL.19.001314
-
Feng K.-M., Chai J.-X., Grubsky V., Starodubov D.S., Hayee M.I., Lee S., Jiang X., Willner A.E., Feinberg J. Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating. IEEE Photonics Technology Letters, 1999, vol. 11, no. 3, pp. 373–375. https://doi.org/10.1109/68.748240
-
Markowski K., Jedrzejewski K., Marzecki M., Osuch T. Linearly chirped tapered fiber-Bragg-grating-based Fabry–Perot cavity and its application in simultaneous strain and temperature measurement. Optics Letters, 2017, vol. 42, no. 7, pp. 1464–1467. https://doi.org/10.1364/OL.42.001464
-
Wei P., Lang H., Liu T., Xia D. Detonation velocity measurement with chirped fiber Bragg grating. Sensors, 2017, vol. 17, no. 11, pp. 2552. https://doi.org/10.3390/s17112552
-
Lemaire P.J., Atkins R.M., Mizrahi V., Reed W.A. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres. Electronics Letters, 1993, vol. 29, no. 13, pp. 1191–1193. https://doi.org/10.1049/el:19930796
-
Varzhel’ S.V., Mun’ko A.S., Konnov K.A., Gribaev A.I., Kulikov A.V. Recording Bragg gratings in hydrogenated birefringent optical fiber with elliptical stress cladding. Journal of Optical Technology, 2016, vol. 83, no. 10, pp. 638–641. https://doi.org/10.1364/JOT.83.000638
-
Mikhneva A.A., Gribaev A.I., Varzhel’ S.V., Frolov E.A., Novikova V.A., Konnov K.A., Zalesskaya Y.K. Inscription and investigation of the spectral characteristics of chirped fiber Bragg gratings. Journal of Optical Technology, 2018, vol. 85, no. 9, pp. 531–534. https://doi.org/10.1364/JOT.85.000531
-
Dmitriev A.A., Gribaev A.I., Varzhel S.V., Konnov K.A., Motorin E.A. High-performance fiber Bragg gratings arrays inscription method. Optical Fiber Technology, 2021, vol. 63, pp. 102508. https://doi.org/10.1016/j.yofte.2021.102508
-
Gribaev A.I., Pavlishin I.V., Stam A.M., Idrisov R.F., Varzhel S.V., Konnov K.A. Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer. Optical and Quantum Electronics, 2016, vol. 48, no. 12, pp. 540. https://doi.org/10.1007/s11082-016-0816-3
-
DmitrievA.A., GrebnevK.V., VarzhelS.V., PlotnikovM.Yu. A fiber optic vibration sensor based on SMF- MMF-SMF Structure And A Tilted Fiber Bragg grating. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 6, pp. 801–807. (inRussian). https://doi.org/10.17586/2226-1494-2021-21-6-801–807
-
NovikovaV.A., Varzhel’S.V., LosevaE.A., DmitrievA.A.Experimental investigation and simulation of phase-shifted fiber Bragg gratings. Journal of Optical Technology, 2021, vol. 88, no. 6, pp. 315–320. https://doi.org/10.1364/JOT.88.000315
-
Idrisov R.F., Gribaev A.I., Stam A.M., Varzhel’ S.V., Slozhenikina Yu.I., Konnov K.A. Inscription of superimposed fiber Bragg gratings using a Talbot interferometer. Journal of Optical Technology, 2017, vol. 84, no. 10, pp. 694–697. https://doi.org/10.1364/JOT.84.000694
-
Dmitriev A.A., Varzhel S.V., Grebnev K.V., Anokhina E.V. Strain gauge based on n-pairs of chirped fiber Bragg gratings. Optical Fiber Technology, 2022, vol. 70, pp. 102893. https://doi.org/10.1016/j.yofte.2022.102893