doi: 10.17586/2226-1494-2022-22-4-812-816


Information reconstruction from noisy channel using ghost imaging method with spectral multiplexing in visible range

E. N. Oparin, V. S. Shumigai, A. O. Ismagilov, A. N. Tsypkin


Read the full article  ';
Article in Russian

For citation:
Oparin E.N., Shumigay V.S., Ismagilov A.O., Tsypkin A.N. Information reconstruction from noisy channel using ghost imaging method with spectral multiplexing in visible range. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 4, pp. 812–816 (in Russian). doi: 10.17586/2226-1494-2022-22-4-812-816


Abstract
The ghost imaging technique allows us to recover information about an object in conditions of noisy transmission channels, commensurate with the intensity of the speckle structures involved in the reconstruction. One of the main disadvantages of this technique is relatively slow reconstruction speed. This limits its applicability for study of dynamic processes or fast-moving objects. In this paper, we propose a modification of the computational ghost imaging technique that allows us to overcome this limitation. It is shown that the spectral multiplexing of the speckle patterns speeds up the image reconstruction. Increase in the number of spectral channels from 4 to 10 leads to the increase of the signal-tonoise ratio by the factor of 6. Simultaneously, under the same conditions and with the same number of measurements classical monochrome ghost imaging does not reconstruct the picture at all. This makes the proposed technique attractive for high-speed demanding applications such as communications and remote sensing.

Keywords: ghost imaging, supercontinuum, spatial light modulator, data transmission, remote sensing

Acknowledgements. The study was partially funded by the Ministry of Education and Science of the Russian Federation (Passport No. 2019- 0903) and RPMA grant of School of Physics and Engineering of ITMO University

References
  1. Willner A.E., Zhao Z., Liu C., Zhang R., Song H., Pang K., Manukyan K., Song H., Su X., Xie G., Ren Y., Yan Y., Tur M., Molisch A.F., Boyd R.W., Zhou H., Hu N., Minoofar A., Huang H. Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams. APL Photonics, 2021, vol. 6, no. 3, pp. 030901. https://doi.org/10.1063/5.0031230
  2. Kaymak Y., Rojas-Cessa R., Feng J., Ansari N., Zhou M., Zhang T. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications. IEEE Communications Surveys & Tutorials, 2018, vol. 20, no. 2, pp. 1104–1123. https://doi.org/10.1109/COMST.2018.2804323
  3. Chan V.W.S. Free-space optical communications. Journal of Lightwave Technology, 2006, vol. 24, no. 12, pp. 4750–4762. https://doi.org/10.1109/JLT.2006.885252
  4. Na Y., Ko D.K. Deep-learning-based high-resolution recognition of fractional-spatial-mode-encoded data for free-space optical communications. Scientific Reports, 2021, vol. 11, no. 1, pp. 2678. https://doi.org/10.1038/s41598-021-82239-8
  5. Clemente P., Durán V., Torres-Company V., Tajahuerce E., Lancis J. Optical encryption based on computational ghost imaging. Optics Letters, 2010, vol. 35, no. 14, pp. 2391–2393. https://doi.org/10.1364/OL.35.002391
  6. Shapiro J.H. Computational ghost imaging. Physical Review A, 2008, vol. 78, no. 6, pp. 061802. https://doi.org/10.1103/PhysRevA.78.061802
  7. Zhang D.-J., Li H.-G., Zhao Q.-L., Wang S., Wang H.-B., Xiong J., Wang K. Wavelength-multiplexing ghost imaging. Physical Review A, 2015, vol. 92, no. 1, pp. 013823. https://doi.org/10.1103/PhysRevA.92.013823
  8. Tcypkin A.N., Putilin S.E., Melnik M.V., Makarov E.A., Bespalov V.G., Kozlov S.A. Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet. Applied Optics, 2016, vol. 55, no. 29, pp. 8390–8394. https://doi.org/10.1364/AO.55.008390
  9. Harm W., Jesacher A., Thalhammer G., Bernet S., Ritsch-Marte M. How to use a phase-only spatial light modulator as a color display. Optics Letters, 2015, vol. 40, no. 4, pp. 581–584. https://doi.org/10.1364/OL.40.000581


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика