doi: 10.17586/2226-1494-2022-22-5-854-858


Automatic recognition of internal structures in translucent objects based on hologram-moire interferometry. 

K. A. Lyakhov, V. A. Grigoriev, E. G. Tsiplakova


Read the full article  ';
Article in Russian

For citation:
Lyakhov K.A., Grigoriev V.A., Tsiplakova E.G. Automatic recognition of internal structures in translucent objects based on hologram-moire interferometry. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 5, pp. 854–858 (in Russian). doi: 10.17586/2226-1494-2022-22-5-854-858


Abstract
A new principal optical scheme for automatic recognition of the shape and relative position of inclusions in moving translucent objects is presented. A new criterion for automatic identification of structures (their localization) based on the analysis of the interference pattern projected on the surface of a CCD matrix, which is an element of the proposed scheme of an optical correlator based on the confocal laser tomograph, has been introduced. The results of this work may be of interest to the specialists in the field of non-destructive control; it can find application in the relevant fields

Keywords: non-destructive control, laser tomography, CCD, interferometry, holographic correlator

References
  1. Ellebrecht D.B., Kuempers Ch., Horn M., Keck T., Kleemann M. Confocal laser microscopy as novel approach for real-time and in-vivo tissue examination during minimal-invasive surgery in colon cancer. Surgical Endoscopy, 2019, vol. 33, pp. 1811–1817. https://doi.org/10.1007/s00464-018-6457-9
  2. Hillman C.S., Lührs Ch., Bonin T., Koch P., Hüttmann G. Holoscopy–holographic optical coherence tomography. Optics Letters, 2011, vol. 36, no. 13, pp. 2390–2392. https://doi.org/10.1364/OL.36.002390
  3. Ahmad A., Srivastava V., Dubey V., Mehta D.S. Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity. Applied Optics Letters, 2015, vol. 106, no. 9, pp. 093701. https://doi.org/10.1063/1.4913870
  4. Stetson K.A., Powel R.L. Hologram Interferometry. Journal of the Optical Society of America, 1966, vol. 56, no. 9, pp. 1161–1166. https://doi.org/10.1364/JOSA.56.001161
  5. Brandt G.B. Hologram-moiré interferometry for transparent objects. Applied Optics, 1967, vol. 6, no. 9, pp. 1535–1540. https://doi.org/10.1364/AO.6.001535
  6. Ryf R., Montemezzani G., Günter P., Grabar A.A., Stoika I.M., Vysochanskii Yu.M. High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal. Optics Letters, 2001, vol. 26, no. 21, pp. 1666–1668. https://doi.org/10.1364/OL.26.001666
  7. Vander Lugt A. Signal detection by complex spatial filtering. IEEE Transactions on Information Theory, 1964, vol. 10, no. 2, pp. 139–145. https://doi.org/10.1109/TIT.1964.1053650
  8. Weaver C.S., Goodman J.W. A technique for optically convolving two functions. Applied Optics, 1966, vol. 5, no. 7, pp. 1248–1249. https://doi.org/10.1364/AO.5.001248
  9. Kulchin Y.N., Vitrik O.B., Kamshilin A.A., Romashko R.V. Adaptive Methods for Processing of Speckle-Modulated Optical Fields. Moscow, Fizmatlit Publ., 2009. 223 p. (in Russia)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика