doi: 10.17586/2226-1494-2022-22-5-903-91


Investigation of optical phenomena in multispectral matrix photodetector based on silicon

V. L. Zhbanova, Y. B. Parvulusov


Read the full article  ';
Article in Russian

For citation:
Zhbanova V.L., Parvulusov Yu.B. Investigation of optical phenomena in multispectral matrix photodetector based on silicon. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 5, pp. 903–911 (in Russian). doi: 10.17586/2226-1494-2022-22-5-903-911


Abstract
A study is presented in the field of development and creation of modernized multi-layer color separation multispectral systems with increased color resolution. The types of structures of the developed patterns of matrix photodetectors based on multilayer silicon with working layers for use in the blue, green, red and infrared spectral ranges are considered. A method for calculating silicon layers in the form of optical films with specified characteristics is proposed. The silicon layers act as both a sensing element and a specific wavelength filter to highlight the blue, green, red and infrared ranges of the spectrum. The reflection and transmission coefficients were calculated for the selected wavelengths at various angles of incidence on the sensor. The Brewster angle for these wavelengths is also calculated. The possible presence of a microlens sensor surface is taken into account. Calculations are presented for cells with four-layer and two-layer structures for various combinations of layers. The dependences of the reflection and transmission coefficients for two-layer and four-layer structures of semiconductor sensors for p- and s-polarization, also for unpolarized light, are obtained. It is shown that the combination of layers in the red and infrared ranges of the spectra has the minimum reflection coefficient and the maximum transmission coefficient. The results obtained can be used in the development of multilayer multispectral systems with registration of infrared radiation. As a result, it is possible to use a pair of red and infrared spectra as the basis of a matrix photodetector pattern, and layers of blue and green spectra as auxiliary ones for building a full-color image.

Keywords: photodetector, infrared, sensor, thin films, multilayer, silicon, potential well, reflection, transmission

Acknowledgements. The research was carried out at the expense of a grant from the Russian Science Foundation № 21-79-00012, https://rscf.ru/en/project/21-79-00012/

References
  1. Yu.B., Zhbanova V.L. Spatial-frequency characteristics of photo matrices for colour image // Journal of Physics: Conference Series. 2020. V. 1679. N 2. P. 022038. https:// Андрианов В.П., Базаров Ю.Б., Губачев А.В., Дулин О.Н., Елгаёнков А.Е., Каменев В.Г., Кузин В.М., Литвинова М.С., Лобастов С.А., Туркин В.Н., Шубин А.С. Цифровой фотохронографический регистратор для исследования быстропротекающих процессов // Физика горения и взрыва. 2018. Т. 54. № 5. С. 117–121. https://doi.org/10.15372/FGV20180516.
  2. Тарасов В.В., Якушенков Ю.Г. Двух- и многодиапазонные оптико-электронные системы с матричными приемниками излучения. М.: Университетская книга, Логос, 2007. 192 с.
  3. Zhbanova V.L. Features of digital colourimetry application in modern scientific research // Light & Engineering. 2021. V. 29. N 3. P. 146–158. https://doi.org/10.33383/2021-028
  4. Айнбунд М.Р., Егоренков А.А., Пашук А.В. Особенности изображений воды, льда, снега, предметов и человека, формируемых гибридной телевизионной камерой в ближнем инфракрасном диапазоне // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21. № 5. С. 619–625. https://doi.org/10.17586/2226-1494-2021-21-5-619-625
  5. Nonaka Y., Yoshida D., Kitamura S., Yokota T., Hasegawa M., Ootsu K. Monocular color-IR imaging system applicable for various light environments // Proc. of the 2018 IEEE International Conference on Consumer Electronics (ICCE). 2018. P. 1–5. https://doi.org/10.1109/ICCE.2018.8326238
  6. Stotko P., Weinmann M., Klein R. Albedo estimation for real-time 3D reconstruction using RGB-D and IR data // ISPRS Journal of Photogrammetry and Remote Sensing. 2019. V. 150. P. 213–225. https://doi.org/10.1016/j.isprsjprs.2019.01.018
  7. Siekański P., Paśko S., Malowany K., Malesa M. Online correction of the mutual miscalibration of multimodal VIS-IR sensors and 3D Data on a UAV platform for surveillance applications // Remote Sensing. 2019. V. 11. N 21. P. 2469. https://doi.org/10.3390/rs11212469
  8. Choe G., Park J., Tai Y.-W., Kweon I. Refining geometry from depth sensors using ir shading images // International Journal of Computer Vision. 2017. V. 122. N 1. P. 1–16. https://doi.org/10.1007/s11263-016-0937-y
  9. Григорьев Л.В. Кремниевая фотоника. СПб.: Университет ИТМО,2016. 94 с.
  10. Лизункова Д.А. Исследование электрических и оптических свойств фоточувствительных структур на наноструктурированном кремнии: диссертация на соискание ученой степени кандидата физико-математических наук. Самара, 2018. 150 с.
  11. Хенкин М.В. Электрические, фотоэлектрические и оптические свойства двухфазных пленок гидрогенезированного кремния: диссертация на соискание ученой степени кандидата физико-математических наук. М., 2015.
  12. Овсюк В.Н., Сидоров Ю.Г., Васильев В.В., Шашкин В.В. Матричные фотоприемники 128 × 128 на основе слоев HgCdTe и многослойных гетероструктур с квантовыми ямами GaAs/AlGaAs // Физика и техника полупроводников. 2001. Т. 35. № 9. С. 1159–1166.
  13. Rieve P., Walder M., Seibel K., Prima J., Mirhamed A. TFA image sensor with stability-optimized photodiode. Patent US7701023. 2010.
  14. Merrill R.B. Color separation in an active pixel cell imaging array using a triple-well structure. Patent US5965875. 1999.
  15. Lyon R.F., Hubel P.M. Eyeing the Camera: into the Next Century // IS&T Reporter “The window on imaging”. 2002. V. 17. N 6.
  16. Gehrke R., Greiwe A. Multispectral image capturing with Foveon sensors // ISPRS – International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences. 2013. V. 40. N 1/W2(1). P. 151–156. https://doi.org/10.5194/isprsarchives-XL-1-W2-151-2013
  17. Zhbanova V.L., Parvulyusov Yu.B., Solomatin V.A. Multispectral matrix silicon photodetectors with the IR range registration // Journal of Physics: Conference Series. 2020. V. 1679. N 2. P. 022039. https://doi.org/10.1088/1742-6596/1679/2/022039
  18. Solomatin V.A., Parvulyusov doi.org/10.1088/1742-6596/1679/2/022038
  19. Парвулюсов Ю.Б., Жбанова В.Л. Моделирование хода лучей в матричном фотоприемнике с многослойной структурой // Известия высших учебных заведений. Геодезия и аэрофотосъемка. 2014. № 4. С. 108–113.
  20. Ландсберг Г.С. Оптика. М.: Физматлит, 2003. 848 с.
  21. Green M.A., Keevers M. Optical properties of intrinsic silicon at 300 K // Progress in Photovoltaics. 1995. V. 3. N 3. P. 189–192. https://doi.org/10.1002/pip.4670030303


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика