doi: 10.17586/2226-1494-2022-22-6-1166-1177


Automated evaluation of ECG parameters during the COVID-19 pandemic

A. S. Vatyan, N. F. Gusarova, N. V. Dobrenko, D. A. Zmievsky, M. A. Kabyshev, T. A. Polevaya, A. A. Tatarinova, I. V. Tomilov


Read the full article  ';
Article in Russian

For citation:
Vatian A.S., Gusarova N.F., Dobrenko N.V., Zmievsky D.A., Kabyshev M.V., Polevaya T.A., Tatarinova A.A., Tomilov I.V. Automated evaluation of ECG parameters during the COVID-19 pandemic. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 6, pp. 1166–1177 (in Russian). doi: 10.17586/2226-1494-2022-22-6-1166-1177


Abstract
Algorithms for prompt automated evaluation of electrocardiogram parameters in the absence of specialized equipment and specialized specialists are considered. The patient’s electrocardiogram is recorded on a paper tape, then it is photographed on the primary care doctor’s mobile phone and processed by a specialized application. The application digitizes the photographed image of the electrocardiogram, evaluates its main parameters as well as calculates criteria for the differential diagnosis of certain diseases using approximate formulas. In addition, the digitized electrocardiogram image is transmitted to the server and processed using a machine learning system. Algorithms for digitizing and analyzing an electrocardiogram have been developed that make it possible to evaluate its elements that are important for diagnosis, and the average error in determining the position of the most complex (smoothed) peaks — P and T waves — was no more than 0.1 mm. An algorithm for the criteria analysis of an electrocardiogram is proposed to support the differential diagnosis of acute myocardial infarction with ST segment elevation and early ventricular repolarization syndrome which provides accuracy values of 0.85 and F-scores of 0.74. An alternative algorithm based on a deep neural network is proposed which provides the best values — 0.96 and 0.88, respectively, but requires large computing resources and is executed on the server. The algorithms are implemented as a set of library functions. They can be used both independently and as part of a full-scale clinical decision support system for automated evaluation of electrocardiogram parameters based on a client-server architecture. In addition, all calculation results, together with a photograph of the original electrocardiogram, can be promptly transferred to a qualified cardiologist in order to receive an advisory opinion remotely.

Keywords: COVID-19, clinical decision support system, automated evaluation of electrocardiogram parameters, support for differential diagnosis

Acknowledgements. The work was supported by the Grant of the President of the Russian Federation No. MK-5723.2021.1.6.

References
  1. Yu J.-N., Wu B.-B., Yang J., Lei X.-L., Shen W.-Q. Cardio-cerebrovascular disease is associated with severity and mortality of COVID-19: A systematic review and meta-analysis. Biological Research for Nursing, 2021, vol. 23, no. 2, pp. 258–269. https://doi.org/10.1177/1099800420951984
  2. Abir M., Nelson Ch., Chan E.W., Al-Ibrahim H., Cutter Ch., Patel K., Bogar A. Critical care surge response strategies for the 2020 COVID-19 outbreak in the United States. Santa Monica, CA: RAND Corporation, 2020. Available at: https://www.rand.org/pubs/research_reports/RRA164-1.html (accessed: 09.09.2021).
  3. Health systems resilience during COVID-19: Lessons for building back better. Ed. by A. Sagan, E. Webb, I. de la Mata, J. Figueras, M. McKee, N. Azzopardi-Muscat. WHO Regional Office for Europe, 2021.
  4. Wang N.C., Jain S.K., Estes N.A.M., Barrington W.W., Bazaz R., Bhonsale A., Kancharla K., Shalaby A.A., Voigt A.H., Saba S., Priority plan for invasive cardiac electrophysiology procedures during the coronavirus disease 2019 (COVID‐19) pandemic. Journal of Cardiovascular Electrophysiology, 2020, vol. 31, no. 6, pp. 1255–1258. https://doi.org/10.1111/jce.14478
  5. Cook D.A., Oh S., Pusic M.V. Accuracy of physicians’ electrocardiogram interpretations: A systematic review and meta-analysis.JAMA Internal Medicine, 2020, vol. 180, no. 11, pp. 1461–1471. https://doi.org/10.1001/jamainternmed.2020.3989
  6. Javeed A., Khan S.U., Ali L., Ali S., Imrana Y., Rahman A. Machine learning-based automated diagnostic systems developed for heart failure prediction using different types of data modalities: A systematic review and future directions. Computational and Mathematical Methods in Medicine, 2022, vol. 2022, pp. 9288452. https://doi.org/10.1155/2022/9288452
  7. Martin-Isla C., Campello V.M., Izquierdo C., Raisi-Estabragh Z., Baeßler B., Petersen S.E., Lekadir K. Image-based cardiac diagnosis with machine learning: A review. Frontiers in Cardiovascular Medicine, 2020, vol. 7, pp. 1. https://doi.org/10.3389/fcvm.2020.00001
  8. Attia Z.I., Noseworthy P.A., Lopez-Jimenez F., Asirvatham S.J., Deshmukh A.J., Gersh B.J., Carter R.E., Yao X., Rabinstein A.A., Erickson B.J., Kapa S., Friedman P.A. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet, 2019, vol. 394, pp. 861–867. https://doi.org/10.1016/S0140-6736(19)31721-0
  9. Katoh T., Yashima M., Takahashi N., Watanabe E., Ikeda T., Kasamaki Y., Sumitomo N., Ueda N., Morita H., Hiraoka M. Expert consensus document on automated diagnosis of the electrocardiogram: The task force on automated diagnosis of the electrocardiogram in Japan. Part 2: Current status of inappropriate automated diagnosis is widely used electrocardiographs in Japan. Journal of Arrhythmia, 2021, vol. 37, no. 6, pp. 1427–1433. https://doi.org/10.1002/joa3.12646
  10. Sangaiah A., Arumugam M., Bian G. An intelligent learning approach for improving ECG signal classification and arrhythmia analysis. Artificial Intelligence in Medicine, 2020, vol. 103, pp. 101788. https://doi.org/10.1016/j.artmed.2019.101788
  11. Tse G., Lee S., Li A., Chang D., Li G., Zhou J., Liu T., Zhang Q. Automated electrocardiogram analysis identifies novel predictors of ventricular arrhythmias in brugada syndrome. Frontiers in Cardiovascular Medicine, 2021, vol. 7, pp. 618254. https://doi.org/10.3389/fcvm.2020.618254
  12. Rueda C., Fernández I., Larriba Y., Rodríguez-Collado A., Canedo C. Compelling new electrocardiographic markers for automatic diagnosis. Computer Methods and Programs in Biomedicine, 2022, vol. 221, pp. 106807. https://doi.org/10.1016/j.cmpb.2022.106807
  13. Fortune J.D., Coppa N.E., Haq K.T., Patel H., Tereshchenko L.G. Digitizing ECG image: new fully automated method. 2021. Available at: https://www.medrxiv.org/content/10.1101/2021.07.13.21260461v1.full.pdf (accessed: 25.04.2022)
  14. Vatian A., Peredreev D., Rodiontsev K., Murzina A., Klevtsova E., Tatarinova A., Treshkur T., Shalyto A., Gusarova N. Helping paramedics in assessing a patient's condition based on ECG by means of mobile phone. Proc. of the International Conferences ICT, Society, and Human Beings 2021; Web Based Communities and Social Media 2021; and e-Health 2021, 2021, pp. 144–151. https://doi.org/10.33965/eh2021_202106l018
  15. Agrawal S. Image Processing in Python – The Computer Vision Techniques. 2021. Available at: https://www.analyticsvidhya.com/blog/2021/08/image–processing–in–python–the–computer–vision–techniques/ (accessed: 25.04.2022)
  16. Park J.-S., Lee S.-W., Park U. R Peak detection method using wavelet transform and modified shannon energy envelope. Journal of Healthcare Engineering, 2017, vol. 2017, pp. 4901017. https://doi.org/10.1155/2017/4901017
  17. Nouira I., Abdallah A.B., Bedoui M.H., Dogui M. A robust R peak detection algorithm using wavelet transform for heart rate variability studies. International Journal on Electrical Engineering and Informatics, 2013, vol. 5, no. 3, pp. 270–284. https://doi.org/10.15676/ijeei.2013.5.3.3
  18. Bae T.W., Kwon К.K. ECG PQRST complex detector and heart rate variability analysis using temporal characteristics of fiducial points. Biomedical Signal Processing and Control, 2021, vol. 66, pp. 102291. https://doi.org/10.1016/j.bspc.2020.102291
  19. Camm A.J., Malik M., Yap Y.G. Acquired Long QT Syndrome. Blacwell Futura, 2004, 208 p.
  20. National Russian recommendations for the use of Holter monitoring in clinical practice (draft). Available at: https://scardio.ru/content/images/recommendation/HM.pdf. (accessed: 20.09.2022). (in Russian)
  21. Goldenberg I., Moss A.J., Zareba W. QT interval: how to measure it and what is “normal”. Journal of Cardiovascular Electrophysiology, 2006, vol. 17, no. 3, pp. 333–336. https://doi.org/10.1111/j.1540-8167.2006.00408.x
  22. Kalyakulina A., Yusipov I., Moskalenko V., Nikolskiy A., Kosonogov K., Zolotykh N., Ivanchenko M. Lobachevsky University Electrocardiography Database. Available at: https://physionet.org/content/ludb/1.0.1/ (accessed: 20.09.2022).
  23. Smith S.W., Khalil A., Henry T.D., Rosas M., Chang R.J., Heller K., Scharrer E., Ghorashi M., Pearce L.A. Electrocardiographic differentiation of early repolarization from subtle anterior ST-segment elevation myocardial infarction. Annals of Emergency Medicine, 2012, vol. 60, no. 1, pp. 45–56.e2. https://doi.org/10.1016/j.annemergmed.2012.02.015
  24. Liu F.F., Liu C., Zhao L., Zhang X., Wu X., Xu X., Liu Y., Ma C., Wei S., He Z., Li J., Yin K., Eddie N. An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. Journal of Medical Imaging and Health Informatics, 2018, vol. 8, no. 7, pp. 1368–1373. https://doi.org/10.1166/jmihi.2018.2442
  25. Choi H.Y., Kim W., Kang G.H., Jang Y.S., Lee Y., Kim J.G., Lee N., Shin D.G., Bae W., Song Y. Diagnostic accuracy of the deep learning model for the detection of ST elevation myocardial infarction on electrocardiogram. Journal of Personalized Medicine, 2022, vol. 12, no. 3, pp. 336. https://doi.org/10.3390/jpm12030336
  26. Chang K.-C., Hsieh P.-H., Wu M.-Y., Wang Y.-C., Wei J.-T., Shih E.S.C., Hwang M.-J., Lin W.-Y., Lin W.-T., Lee K.-J., Wang T.-H. Usefulness of multi-labelling artificial intelligence in detecting rhythm disorders and acute ST-elevation myocardial infarction on 12-lead electrocardiogram. European Heart Journal - Digital Health, 2021, vol. 2, no. 2, pp. 299–310. https://doi.org/10.1093/ehjdh/ztab029
  27. Liu Z., Mao H., Wu C.-Y., Feichtenhofer C., Darrell T., Xie S. A ConvNet for the 2020s. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp. 11966–11976. https://doi.org/10.1109/CVPR52688.2022.01167


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика