doi: 10.17586/2226-1494-2023-23-3-465-472


Fractal micro- and nanodendrites of silver, copper and their compounds for photocatalytic water splitting

A. I. Sidorov, P. A. Bezrukov, A. V. Nashchekin, N. V. Nikonorov


Read the full article  ';
Article in Russian

For citation:
Sidorov A.I., Bezrukov P.A., Nashchekin A.V., Nikonorov N.V. Fractal micro- and nanodendrites of silver, copper and their compounds for photocatalytic water splitting. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 3, pp. 465–472 (in Russian). doi: 10.17586/2226-1494-2023-23-3-465-472


Abstract
The results of investigation of morphology and photocatalytic properties of thin films in a form of dendrites of silver and copper, and their compounds synthesized by the reaction of substitution, are presented. The morphology and the composition of the synthesized layers were performed by scanning electron microscope. It was shown that already through 2–3 s after the reaction beginning metal nanoporous layers up to 1 μm thick are formed on the substrates. Silver layers consist of micro-crystalline hexagonal plates and micro- and nano-dendrites. As the duration of the reaction increases the layers become more compacted, and the minimum of the pores size becomes 20 nm. In the case of the reaction with the copper salt the formation of copper microdendrites takes place immediately. The internal quantum yield of photocatalysis of water for silver and copper layers as well as for metal-semiconductor layers is 0.4–0.45 %. The obtained results can be used for the creation of photocathodes with large surface for photocathalytic water splitting in order to obtain hydrogen fuel.

Keywords: nanoporous layer, silver, copper, morphology, photocatalysis

Acknowledgements. This work was financially supported by the Russian Science Foundation (Project No. 20-19-00559). SEM characterization were performed using equipment owned by the Federal Joint Research Center “Material Science and Characterization in Advanced Technology” with financial support by the Ministry of Education and Science of the Russian Federation

References
  1. Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W. Environmental applications of semiconductor photocatalysis.Chemical Reviews, 1995, vol. 95, no. 1, pp. 69–96. https://doi.org/10.1021/cr00033a004
  2. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, vol. 238, no. 5358, pp. 37–38. https://doi.org/10.1038/238037a0
  3. Morales-Guio C.G., Stern L.-A., Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, vol. 43, no. 18, pp. 6555. https://doi.org/10.1039/c3cs60468c
  4. Warren S.C., Thimsen E. Plasmonic solar water splitting. Energy & Environmental Science, 2012, vol. 5, no. 1, pp. 6446. https://doi.org/10.1039/c1ee02875h
  5. Gan J., Lu X., Tong Y. Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale, 2014, vol. 6, no. 13, pp. 7142. https://doi.org/10.1039/c4nr01181c
  6. Koya A.N., Zhu X., Ohannesian N., Yanik A.A., Alabastri A., Zaccaria R.P.,KrahneR.,Shih W.-C., Garoli D. Nanoporous metals: From plasmonic properties to applications in enhanced spectroscopy and photocatalysis. ACS Nano, 2021, vol. 15, no. 4, pp. 6038. https://doi.org/10.1021/acsnano.0c10945
  7. Peerakiatkhajohn P., Butburee T., Yun J.-H., Chen H., Richards R.M., Wang L. A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, vol. 3, no. 40, pp. 20127. https://doi.org/10.1039/c5ta04137f
  8. Siripala W., Ivanovskaya A., Jaramillo T.F., Baeck S.H., McFarland E.W. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Materials and Solar Cells, 2003, vol. 77, no. 3, pp. 229–237. https://doi.org/10.1016/S0927-0248(02)00343-4
  9. Cao J., Luo B., Lin H., Chen S. Synthesis, characterization and photocatalytic activity of AgBr/H2WO4 composite photocatalyst. Journal of Molecular Catalysis A: Chemical, 2011, vol. 344, no. 1-2, pp. 138–144. https://doi.org/10.1016/j.molcata.2011.05.012
  10. Wang P., Huang B.B., Qin X.Y., Zhang X.Y., Dai Y., Wei J.Y., Whangbo M.H. Ag@AgCl: A Highly efficient and stable photocatalyst active under visible light. Angewandte Chemie International Edition, 2008, vol. 47, no. 41, pp. 7931–7933. https://doi.org/10.1002/anie.200802483
  11. Wang P., Huang B.B., Zhang X.Y., Qin X.Y., Jin H., Dai Y., Wang Z.Y., Wei J.Y., Zhan J., Wang S.Y., Wang J.P., Whangbo M.H. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chemistry - A European Journal, 2009, vol. 15, no. 8, pp. 1821–1824. https://doi.org/10.1002/chem.200802327
  12. Wang P., Huang B.B., Zhang Q.Q., Zhang X., Qin X.Y., Dai Y., Zhan J., Yu J.G., Liu H.X., Lou Z.Z. Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I). Chemistry - A European Journal, 2010, vol. 16, no. 33, pp. 10042. https://doi.org/10.1002/chem.200903361
  13. Jia H., Wong Y.L., Wang B., Xing G., Tsoi C.C., Wang M., Zhang W., Jian A., Sang S., Lei D., Zhang X. Enhanced solar water splitting using plasmon-induced resonance energy transfer and unidirectional charge carrier transport. Optics Express, 2021, vol. 29, no. 21, pp. 34810. https://doi.org/10.1364/OE.440777
  14. Xiang Q.J., Yu J.G., Cheng B., Ong H.C. Microwave‐hydrothermal preparation and visible‐light photoactivity of plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres. Chemistry - An Asian Journal, 2010, vol. 5, no. 6, pp. 1466–1474. https://doi.org/10.1002/asia.200900695
  15. Zhou H., Sheng X., Xiao J., Ding Zh. Increasing the efficiency of photocatalytic reactions via surface microenvironment engineering. Journal of the American Chemical Society, 2020, vol. 142, no. 6, pp. 2738–2743. https://doi.org/10.1021/jacs.9b12247
  16. Klimov V.V. Nanoplasmonics. Pan Stanford Publ., 2014, 460 p.
  17. Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Berlin, Springer-Verlag, 1995, 532 p. https://doi.org/10.1007/978-3-662-09109-8
  18. Stockman M.I. Electromagnetic Theory of SERS. Surface-enhanced Raman scattering. New York, Springer, 2006, pp. 47–65. https://doi.org/10.1007/3-540-33567-6_3
  19. Yakimchuk D.V., Kaniukov E.Y., Lepeshov S., Bundyukova V.D., Demyanov S.E., Arzumanyan G.M., Doroshkevich N.V., Mamatkulov K.Z., Bochmann A., Presselt M., Stranik O., Khubezhov S.A., Krasnok A.E., Alù A., Sivakov A. Self-organized spatially separated silver 3D dendrites as efficient plasmonic nanostructures for surface-enhanced Raman spectroscopy applications. Journal of Applied Physics, 2019, vol. 126, no. 23, pp. 233105. https://doi.org/10.1063/1.5129207
  20. Ding Y., Zhang Z. Nanoporous Metals for Advanced Energy Technologies. Springer Cham, 2016, 223 p. https://doi.org/10.1007/978-3-319-29749-1
  21. Koya A.N., Cunha J., Guo T.-L., Toma A., Garoli D., Wang T., Juodkazis S., Cojoc D., Zaccaria R.P. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications. Advanced Optical Materials, 2020, vol. 8, no. 7, pp. 1901481. https://doi.org/10.1002/adom.201901481
  22. Fujita T. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality. Science and Technology of Advanced Materials, 2017, vol. 18, no. 1, pp. 724–740. https://doi.org/10.1080/14686996.2017.1377047
  23. Pshenova A.S., Sidorov A.I., Antropova T.V., Nashchekin A.V. Luminescence enhancement and SERS by self-assembled plasmonic silver nanostructures in nanoporous glasses. Plasmonics, 2019, vol. 14, no. 1, pp. 125–131. https://doi.org/10.1007/s11468-018-0784-5
  24. Komissarenko F.E., Mukhin I.S., Golubok A.O., Nikonorov N.V., Prosnikov M.A., Sidorov A.I. Effect of electron beam irradiation on thin metal films on glass surfaces in a submicrometer scale. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2016, vol. 15, no. 1, pp. 013502. https://doi.org/10.1117/1.JMM.15.1.013502
  25. Choi S., Dickson R.M., Yu J. Developing luminescent silver nanodots for biological applications. Chemical Society Reviews, 2012, vol. 41, no. 5, pp. 1867–1891. https://doi.org/10.1039/c1cs15226b
  26. Arnob M.M.P., Artur C., Misbah I., Mubeen S., Shih W.-C. 10×-enhanced heterogeneous nanocatalysis on a nanoporous gold disk array with high-density hot spots. ACS Applied Materials & Interfaces, 2019, vol. 11, no. 4, pp. 13499–13506. https://doi.org/10.1021/acsami.8b19914
  27. Shen Z., O’Carroll D.M. Nanoporous silver thin films: Multifunctional platforms for influencing chain morphology and optical properties of conjugated polymers. Advanced Functional Materials, 2015, vol. 25, no. 22, pp. 3302–3313. https://doi.org/10.1002/adfm.201500456
  28. Ron R., Haleva E., Salomon A. Nanoporous metallic networks: fabrication, optical properties, and applications. Advanced Materials, 2018, vol. 30, no. 41, pp. 1706755. https://doi.org/10.1002/adma.201706755
  29. Jiao Y., Chen M., Ren Y., Mai H. Synthesis of three-dimensional honeycomb-like Au nanoporous films by laser induced modification and its application for surface enhanced Raman spectroscopy. Optical Materials Express, 2017, vol. 7, no. 5, pp. 1557. https://doi.org/10.1364/OME.7.001557
  30. Samsonov V.M., Kuznetsova Yu.V., D’yakova E.V. Fractal properties of aggregates of metal nanoclusters on solid surface. Technical Physics, 2016, vol. 61, no. 2, pp. 227–232. https://doi.org/10.1134/S1063784216020201
  31. Tamm I., Schubin S. Zur theorie des photoeffektes an metallen. Zeitschrift für Physik, 1931, vol. 68, no. 1-2, pp. 97–113. https://doi.org/10.1007/BF01392730
  32. Dobretsov L.N., Gomoyunova V.V. Emission Electronics. Moscow, Nauka Publ., 1966. 564 p. (in Rusian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика