doi: 10.17586/2226-1494-2023-23-5-920-926

Spectral and kinetic characteristics of ultrathin cadmium selenide nanoscrolls

D. S. Daibagya

Read the full article  ';
Article in Russian

For citation:
Daibagya D.S. Spectral and kinetic characteristics of ultrathin cadmium selenide nanoscrolls. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 5, pp. 920–926 (in Russian). doi: 10.17586/2226-1494-2023-23-5-920-926

We have studied the optical and luminescence properties at room temperature of ultrathin colloidal semiconductor cadmium selenide nanoscrolls with a thickness of 2.5 monolayers. For colloidal synthesis of the objects under study, cadmium acetate dihydrate Cd(CH3COO)2·2H2O and trioctylphosphine selenide were used as precursors of cadmium and selenium, respectively, and solutions of oleic acid and octadecene were also used. Luminescence spectrum of cadmium selenide nanoscrolls was recorded using a fiber charge coupled device spectrometer. Spectrally resolved photoluminescence decays for nanoparticles were measured with the use of time-correlated single photon counting technique. The emission of the cadmium selenide nanoscrolls consists of interband and recombination luminescence bands. We found that the normalized photon numbers of recombination luminescence are larger than the normalized photon numbers of interband luminescence. We determined dominant wavelengths, chromaticity coordinates, and correlated color temperatures of ultrathin colloidal semiconductor cadmium selenide nanoscrolls. These ultrathin cadmium selenide nanoscrolls are promising for application in light-emitting diodes.

Keywords: photoluminescence, nanoparticles, nanoscrolls, cadmium selenide, chromaticity coordinates, color purity, correlated color temperature

Acknowledgements. Author is grateful to R.B. Vasiliev for providing the nanostructures as well as to M.L. Skorikov, A.S. Selyukov and S.A. Ambrozevich for helpful discussions.

  1. Kushavah D., Mohapatra P.K., Ghosh P., Singh M., Vasa P., Bahadur D., Singh B.P. Photoluminescence characteristics of CdSe quantum dots: role of exciton–phonon coupling and defect/trap states. Materials Research Express, 2017, vol. 4, no. 7, pp. 075007.
  2. Katsaba A.V., Fedyanin V.V., Ambrozevich S.A., Vitukhnovsky A.G., Lobanov A.N., Selyukov A.S., Vasiliev R.B., Samatov I.G., Brunkov P.N. Characterization of defects in colloidal CdSe nanocrystals by the modified thermostimulated luminescence technique. Semiconductors, 2013, vol. 47, no. 10, pp. 1328–1332.
  3. Daibagya D.S., Ambrozevich S.A., Perepelitsa A.S., Zakharchuk I.A., Osadchenko A.V., Bezverkhnyay aD.M., Avramenko A.I., Selyukov A.S. Spectral and kinetic properties of silver sulfide quantum dots in an external electric field. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 6, pp. 1098–1103. (in Russian).
  4. Reznik R.R., Kotlyar K.P., Shtrom I.V., Samsonenko Yu.B., Khrebtov A.I., Cirlin G.E. Different III-V semiconductor nanowires with quantum dots on silicon: growth by molecular-beam epitaxy and properties. Scientific and Technical Journal of Information Technologies, Mechanics and Optics,2021,vol. 21, no. 6, pp. 866–871.
  5. Makurin A.A., Kolobkova E.V. Investigation of spectral-luminescent properties of cesium CsPb(BrCl)3 quantum dots in fluorophosphate glasses. Scientific and Technical Journal of Information Technologies, Mechanics and
    , 2022, vol. 22, no. 5, pp. 896–902. (in Russian).
  6. Vitukhnovsky A.G., Selyukov A.S., Solovey V.R., Vasiliev R.B., Lazareva E.P. Photoluminescence of CdTe colloidal quantum wells in external electric field. Journal of Luminescence, 2017, vol. 186, pp. 194–198.
  7. Ovchinnikov O.V., Smirnov M.S., Korolev N.V., Golovinski P.A., Vitukhnovsky A.G. The size dependence recombination luminescence of hydrophilic colloidal CdS quantum dots in gelatin. Journal of Luminescence, 2016, vol. 179, pp. 413–419.
  8. Mićić O.I., Cheong H.M., Fu H., Zunger A., Sprague J.R., Mascarenhas A., Nozik A.J. Size-dependent spectroscopy of InP quantum dots. The Journal of Physical Chemistry B, 1997, vol. 101, no. 25, pp. 4904–4912.
  9. Miller E.M., Kroupa D.M., Zhang J., Schulz P., Marshall A.R., Kahn A., Lany S., Luther J.M., Beard M.C., Perkins C.L., Van De Lagemaat J. Revisiting the valence and conduction band size dependence of PbS quantum dot thin films. ACS Nano, 2016, vol. 10, no. 3, pp. 3302–3311.
  10. de Mello Donega C., Koole R. Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. The Journal of Physical Chemistry C, 2009, vol. 113, no. 16, pp. 6511–6520.
  11. Selyukov A.S., Vitukhnovskii A.G., Lebedev V.S., Vashchenko A.A., Vasiliev R.B., Sokolikova M.S. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode Journal of Experimental and Theoretical Physics, 2015, vol. 120, no. 4, pp. 595–606.
  12. Jin T., Lian T. Trap state mediated triplet energy transfer from CdSe quantum dots to molecular acceptors. The Journal of Chemical Physics, 2020, vol. 153, no. 7, pp. 074703.
  13. Yokota H., Okazaki K., Shimura K., Nakayama M., Kim D. Photoluminescence properties of self-assembled monolayers of CdSe and CdSe/ZnS quantum dots. The Journal of Physical Chemistry C, 2012, vol. 116, no. 9, pp. 5456–5459.
  14. Vasiliev R.B., Sokolikova M.S., Vitukhnovskii A.G., Ambrozevich S.A., Selyukov A.S., Lebedev V.S. Optics of colloidal quantum-confined CdSe nanoscrolls. Quantum Electronics, 2015, vol. 45, no. 9, pp. 853–857.
  15. Tessier M.D., Javaux C., Maksimovic I., Loriette V., Dubertret B. Spectroscopy of single CdSe nanoplatelets.ACS Nano, 2012, vol. 6, no. 8, pp. 6751–6758.
  16. Saidzhonov B.M., Zaytsev V.B., Berekchiian M.V., Vasiliev R.B. Highly luminescent copper-doped ultrathin CdSe nanoplatelets for white-light generation. Journal of Luminescence, 2020, vol. 222, pp. 117134.
  17. Kurtina D.A., Grafova V.P., Vasil’eva I.S., Maksimov S.V., Zaytsev V.B., Vasiliev R.B. Induction of chirality in atomically thin ZnSe and CdSe nanoplatelets: strengthening of circular dichroism via different coordination of cysteine-based ligands on an ultimate thin semiconductor core. Materials, 2023, vol. 16, no. 3, pp. 1073.
  18. Kurtina D.A., Garshev A.V., Vasil’eva I.S., Shubin V.V., Gaskov A.M., Vasiliev R.B. Atomically thin population of colloidal CdSe nanoplatelets: growth of rolled-up nanosheets and strong circular dichroism induced by ligand exchange. Chemistry of Materials, 2019, vol. 31, no. 23, pp. 9652–9663.
  19. Gorbunova E.V., Chertov A.N. Colorimetry of Emission Sources. St. Petersburg, ITMO University, 2015, 126 p. (in Russian)
  20. Zhbanova V.L. Color triangle color separation system for colorimetric research in microscopy. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 2, pp. 236–244. (in Russian).
  21. Christodoulou S., Climente J.I., Planelles J., Brescia R., Prato M., Martín-García B., Khan A.H., Moreels I. Chloride-induced thickness control in CdSe nanoplatelets. Nano Letters, 2018, vol. 18, no. 10, pp. 6248–6254.
  22. Ott F.D., Riedinger A., Ochsenbein D.R., Knüsel P.N., Erwin S.C., Mazzotti M., Norris D.J. Ripening of semiconductor nanoplatelets. Nano Letters, 2017, vol. 17, no. 11, pp. 6870–6877.
  23. Biadala L., Liu F., Tessier M.D., Yakovlev D.R., Dubertret B., Bayer M. Recombination dynamics of band edge excitons in quasi-two-dimensional CdSe nanoplatelets. Nano Letters, 2014, vol. 14, no. 3, pp. 1134–1139.
  24. Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies. Moscow, Fizmatlit Publ., 2005, 416 p. (in Russian)
  25. Smirnov M.S., Ovchinnikov O.V. IR luminescence mechanism in colloidal Ag2S quantum dots. Journal of Luminescence, 2020, vol. 227, pp. 117526.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.