doi: 10.17586/2226-1494-2023-23-5-1065-1072

Study of heat and mass transfer processes in the Fe-Sn reaction crucible in the presence of high-density electric current

V. E. Fomin, A. V. Novotelnova, G. A. Bolkunov, F. Y. Bochkanov, D. Y. Karpenkov

Read the full article  ';
Article in Russian

For citation:
Fomin V.E., Novotelnova A.V., Bolkunov G.A., Bochkanov F.Yu., Karpenkov D.Yu. Study of heat and mass transfer processes in the Fe-Sn reaction crucible in the presence of high-density electric current. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 5, pp. 1065–1072 (in Russian). doi: 10.17586/2226-1494-2023-23-5-1065-1072

In the search for new magnetically ordered phases of materials, solid-state synthesis technologies in reaction crucibles are used. The final result of the synthesis process in reaction crucibles is conditioned, in particular, by technological factors, the mode of current flow and its density, the achieved temperature in the reaction zone, exposure time, geometrical parameters of the crucible and the reaction zone, etc. The paper presents the results of influence investigation of the reaction volume filling degree with tin melt on the processes of heat and mass transfer during its electrothermal treatment. A model describing diffusion processes in the reaction zone during the synthesis of iron and tin intermetallides under electrothermal treatment has been proposed. The diffusion process in the reaction crucibles of the iron-tin system was investigated by the finite element method in the Comsol Multiphysics software environment. It is shown that the decrease in the degree of filling of the reaction crucible with synthesis components leads to a change in the distribution of current density and a decrease in the temperature in the reaction zone, which affects the mass transfer processes. The results of the work can be used in the analysis of experimental data on the production of intermetallides by reaction synthesis and determination of the necessary technological parameters for the synthesis of new materials.

Keywords: computer simulation, finite element method, electrodiffusion, heat transfer, mass transfer

  1. Bell L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, vol. 321, no. 5895, pp. 1457–1461.
  2. Miyasato T., Abe N., Fujii T., Asamitsu A., Onose Y., Onoda S., Nagaosa N., Tokura Y. Anomalous Hall effect and Nernst effect in itinerant ferromagnets. Journal of Magnetism and Magnetic Materials, 2007, vol. 310, no. 2, pp. 1053–1055.
  3. Predel B. Fe-Sn (Iron-tin). Dy-Er–Fr-Mo, 1995, pp. 1–5.
  4. Li H., Ding B., Chen J., Li Z., Liu E., Xi X., Wu G., Wang W. Large anisotropic topological Hall effect in a hexagonal non-collinear magnet Fe5Sn3. Applied Physics Letters, 2020, vol. 116, no. 18, pp. 182405.
  5. Bulat L.P., Nefedova I.A. Nonlinear thermoelectric phenomena. Journal of International Academy of Refrigeration, 2012, no. 4, pp. 54–56. (in Russian)
  6. Fayyazi B., Skokov K.P., Faske T., Karpenkov D.Yu., Donner W., Gutfleisch O. Bulk combinatorial analysis for searching new rare-earth free permanent magnets: Reactive crucible melting applied to the Fe-Sn binary system. Acta Materialia, 2017, vol. 141, pp. 434–443.
  7. Chen C.M., Chen S.W. Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions. Journal of Electronic Materials, 2000, vol. 29, no. 10, pp. 1222–1228.
  8. Pierce D.G., Brusius P.G. Electromigration: A review. Microelectronics Reliability, 1997, vol. 37, no. 7, pp. 1053–1072.
  9. Torres-Gómez N., Nava O., Argueta-Figueroa L., García-Contreras R., Baeza-Barrera A., Vilchis-Nestor A.R. Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: effect of temperature. Journal of Nanomaterials, 2019, vol. 2019, pp. 1–15.
  10. Pingale A.D., Belgamwar S.U., Rathore J.S. Synthesis and characterization of Cu–Ni/Gr nanocomposite coatings by electro-co-deposition method: effect of current density. Bulletin of Materials Science, 2020, vol. 43, no. 1, pp. 1–9.
  11. Tréheux D., Guiraldenq P. Etude des diagrammes d'équilibre binaires par la méthode des couples de diffusion. Application au système fer-étain. Scripta Metallurgica, 1974, vol. 8, no. 4, pp. 363–366 (in French).
  12. Davis J.R. Concise Metals Engineering Data Book. ASM International, 1997, 257 p.
  13. Malmstrom C., Keen R., Green L. Some mechanical properties of graphite at elevated temperatures. Journal of Applied Physics, 1951, vol. 22, no. 5, pp. 593–600.
  14. Mills K.C., Su Y., Li Z., Brooks R.F. Equations for the calculation of the thermo-physical properties of stainless steel. ISIJ International, 2004, vol. 44, no. 10, pp. 1661–1668.
  15. Phillips N.E. Low-temperature heat capacity of metals. C R C Critical Reviews in Solid State Sciences, 1971, vol. 2, no. 4, pp. 467–553.
  16. Picard S., Burns D.T., Roger P. Determination of the specific heat capacity of a graphite sample using absolute and differential methods. Metrologia, 2007, vol. 44, no. 5, pp. 294–302.
  17. Tsang D.K.L., Marsden B.J., Fok S.L., Hall G. Graphite thermal expansion relationship for different temperature ranges. Carbon, 2005, vol. 43, no. 14, pp. 2902–2906.
  18. Iwashita N., Imagawa H., Nishiumi W. Variation of temperature dependence of electrical resistivity with crystal structure of artificial graphite products. Carbon, 2013, vol. 61, pp. 602–608.
  19. Klemens P.G., Pedraza D.F. Thermal conductivity of graphite in the basal plane. Carbon, 1994, vol. 32, no. 4, pp. 735–741.
  20. Patel A.B., Bhatt N.K., Thakore B.Y., Vyas P.R., Jani A.R. The temperature-dependent electrical transport properties of liquid Sn using pseudopotential theory. Molecular Physics, 2014, vol. 112, no. 15, pp. 2000–2004.
  21. Eiling A., Schilling J.S. Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300K and 0-10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In. Journal of Physics F: Metal Physics, 1981, vol. 11, no. 3, pp. 623–639.
  22. Taylor G.R., Isin A., Coleman R.V. Resistivity of iron as a function of temperature and magnetization. Physical Review, 1968, vol. 165, no. 2, pp. 621–631.
  23. Torres D.N., Perez R.A., Dyment F. Diffusion of tin in α-iron. Acta Materialia, 2000, vol. 48, no. 11, pp. 2925–2931.
  24. Neumann G., Tuijn C. Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data. Elsevier, 2009, 360 p.
  25. Fomin V.E., Tukmakova A.S., Bolkunov G.A., Novotelnova A.V., Bochkanov F.Yu., Karpenkov D.YU. Simulation of diffusion processes during electrothermal treatment of reaction crucibles of the Fe-Sn system. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 1, pp. 202–209. (in Russian).
  26. Dorodnitcyn V.A., Elenin G.G. Symmetry of nonlinear phenomena. Computers and nonlinear phenomena. Informatics and modern natural science, Moscow, Nauka Publ., 1988, pp. 180. (in Russian)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.