doi: 10.17586/2226-1494-2024-24-3-399-405


Insights from Keldysh theory to plasma electron density in liquid water under excitation wavelength scaling

S. Hilal, A. O. Ismagilov, A. N. Tsypkin, M. V. Melnik


Read the full article  ';
Article in English

For citation:
Hilal S., Ismagilov A.O., Tcypkin A.N., Melnik M.V. Insights from Keldysh theory to plasma electron density in liquid water under excitation wavelength scaling. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 3, pp. 399–405. doi: 10.17586/2226-1494-2024-24-3-399-405


Abstract
The study of plasma generation in liquids is relevant for many applications, especially for increasing the efficiency of terahertz radiation generation. This work investigates the relationship between the laser excitation wavelength and the plasma electron density in liquid water in the near-infrared spectral range. Using numerical simulation methods based on the Keldysh theory, patterns of changes in the ionization rate and changes in the plasma electron density depending on the excitation wavelength are analyzed. The results show the mutual influence of above-threshold ionization and tunneling effects when the Keldysh parameter is close to one. A decrease in plasma electron density with increasing excitation wavelength has been shown. However, in certain wavelength ranges a local increase in plasma electron density was observed. The theoretical results obtained are consistent with the experimental data of other scientific groups. This theoretical study provides valuable information on the modulation of plasma electron density by changing laser excitation wavelengths, which is important for increasing the efficiency of terahertz radiation generation.

Keywords: plasma, Keldysh theory, ionization, liquid, wavelength, plasma-based THz generation, plasma electron density

Acknowledgements. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant No. 2019-0903).

References
  1. Zhang Y., Li K., Zhao H. Intense terahertz radiation: generation and application. Frontiers of Optoelectronics, 2021, vol. 14, no. 1, pp. 4–36. https://doi.org/10.1007/s12200-020-1052-9
  2. Leibov L., Ismagilov A., Zalipaev V., Nasedkin B., Grachev Y., Petrov N., Tcypkin A. Speckle patterns formed by broadband terahertz radiation and their applications for ghost imaging. Scientific Reports, 2021, vol. 11, no. 1, pp. 20071. https://doi.org/10.1038/s41598-021-99508-1
  3. Ponomareva E.A., Ismagilov A.O., Putilin S.E., Tsypkin A.N., Kozlov S.A., Zhang X. Varying pre-plasma properties to boost terahertz wave generation in liquids. Communications Physics, 2021, vol. 4, no. 1, pp. 4. https://doi.org/10.1038/s42005-020-00511-1
  4. Vanraes P., Bogaerts A. Plasma physics of liquids—A focused review. Applied Physics Reviews, 2018, vol. 5, no. 3, pp. 031103. https://doi.org/10.1063/1.5020511
  5. Ponomareva E., Ismagilov A., Putilin S., Tcypkin A.N. Plasma reflectivity behavior under strong subpicosecond excitation of liquids. APL Photonics. 2021, vol. 6, no. 12, pp. 126101. https://doi.org/10.1063/5.0070963
  6. Yiwen E., Zhang X.-C. Terahertz generation from water under long wavelength excitation. Proc. of the 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2023, pp. 1–1. https://doi.org/10.1109/IRMMW-THz57677.2023.10298975
  7. Ponomareva E.A. Wavelength dependence of plasma-based THz generation in liquids. Proc. of the 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2022, pp. 1–2. https://doi.org/10.1109/IRMMW-THz50927.2022.9896033
  8. Clerici M., Peccianti M., Schmidt B.E., Caspani L., Shalaby M., Giguère M., Lotti A., Couairon A., Légaré F., Ozaki T., Faccio D., Morandotti R. Wavelength Scaling of terahertz generation by gas ionization. Physical Review Letters, 2013, vol. 110, no. 25, pp. 253901. https://doi.org/10.1103/PhysRevLett.110.253901
  9. Wang T.J., Ju J., Liu Y., Li R., Xu Z., Chin S.L. Waveform control of enhanced THz radiation from femtosecond laser filament in air. Applied Physics Letters, 2017, vol. 110, no. 22, pp. 221102. https://doi.org/10.1063/1.4984599
  10. Wang T.J., Ju J., Wei Y., Li R., Xu Z., Chin S.L. Longitudinally resolved measurement of plasma density along femtosecond laser filament via terahertz spectroscopy. Applied Physics Letters, 2014, vol. 105, no. 5, pp. 051101. https://doi.org/10.1063/1.4892424
  11. Nagar G.C., Dempsey D., Shim B. Wavelength scaling of electron collision time in plasma for strong field laser-matter interactions in solids. Communications Physics, 2021, vol. 4, no. 1, pp. 96. https://doi.org/10.1038/s42005-021-00600-9
  12. Petrović V.M., Delibaśić H.S., Petrović I.D. Strong-field tunneling ionization rate based on landau–dykhne transition theory. Journal of Experimental and Theoretical Physics, 2021, vol. 133, no. 1, pp. 1–6. https://doi.org/10.1134/S1063776121060078
  13. Nikolaeva I.A., Shipilo D.E., Panov N.A., Liu W., Savel’ev A.B., Kosareva O.G. Scaling law of THz yield from two-color femtosecond filament for fixed pump power. Photonics, 2022, vol. 9, no. 12, pp. 974. https://doi.org/10.3390/photonics9120974
  14. Keldysh L. Ionization in the field of a strong electromagnetic wave. Soviet Physics – JETP, 1965, vol. 20, no. 5, pp. 1307–1314.
  15. Gruzdev V.E. Laser-induced ionization of solids: back to Keldysh. Proceedings of SPIE, 2005, vol. 5647. https://doi.org/10.1117/12.578469
  16. Bauer J.H. Keldysh theory re-examined. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, vol. 49, no. 14, pp. 145601. https://doi.org/10.1088/0953-4075/49/14/145601
  17. Quan W., Lin Z., Wu M., Kang H., Liu H., Liu X., Chen J., Liu J., He X.T., Chen S.G., Xiong H., Guo L., Xu H., Fu Y., Cheng Y., Xu Z.Z. Classical aspects in above-threshold ionization with a midinfrared strong laser field. Physical Review Letters, 2009, vol. 103, no. 9, pp. 093001. https://doi.org/10.1103/physrevlett.103.093001
  18. Amini K., Biegert J., Calegari F., Chacón A., Ciappina M.F., Dauphin A., Efimov D.K., de Morisson Faria C.F., Giergiel K., Gniewek P., Landsman A.S., Lesiuk M., Mandrysz M., Maxwell A.S., Moszyński R., Ortmann L., Pérez-Hernández J.A., Picón A., Pisanty E., Prauzner-Bechcicki J., Sacha K., Suárez N., Zaïr A., Zakrzewski J., Lewenstein M. Symphony on strong field approximation. Reports on Progress in Physics, 2019, vol. 82, no. 11, pp. 116001. https://doi.org/10.1088/1361-6633/ab2bb1
  19. Wang R., Zhang Q., Li D., Xu S., Cao P., Zhou Y., Cao W., Lu P. Identification of tunneling and multiphoton ionization in intermediate Keldysh parameter regime. Optics Express, 2019, vol. 27, no. 5, pp. 6471–6482. https://doi.org/10.1364/OE.27.006471
  20. Kennedy P.K. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory. IEEE Journal of Quantum Electronics, 1995, vol. 31, no. 12, pp. 2241–2249. https://doi.org/10.1109/3.477753
  21. Noack J., Vogel A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE Journal of Quantum Electronics, 1999, vol. 35, no. 8, pp. 1156–1167. https://doi.org/10.1109/3.777215
  22. Parker J., Clark Ch.W. Study of a plane-wave final-state theory of above-threshold ionization and harmonic generation. Journal of the Optical Society of America B, 1996, vol. 13, no. 2, pp. 371–379. https://doi.org/10.1364/JOSAB.13.000371


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика