doi: 10.17586/2226-1494-2024-24-3-406-414


Luminescent and colorimetric properties of silica-coated spherical cadmium telluride nanocrystals in an external electric field

D. S. Daibagya, S. A. Ambrozevich, I. A. Zakharchuk, A. V. Osadchenko, A. S. Selyukov


Read the full article  ';
Article in Russian

For citation:
Daibagya D.S., Ambrozevich S.A., Zakharchuk I.A., Osadchenko A.V., Selyukov A.S. Luminescent and colorimetric properties of silica-coated spherical cadmium telluride nanocrystals in an external electric field. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 3, pp. 406–414 (in Russian). doi: 10.17586/2226-1494-2024-24-3-406-414


Abstract
The study concerns the behavior of optical and colorimetric properties of cadmium telluride semiconductor colloidal quantum dots covered with silica shell (CdTe/SiO2, core/shell) in an external constant electric field has been studied. To date, the electric field is known to lead mainly to quenching and red shift of the luminescence spectra of quantum dots; however, in most of the corresponding studies only the behavior of band-edge luminescence is considered. In this work, in addition to the luminescence due to interband transitions, the effect of the electric field on the trap-related luminescences of core/shell quantum dots is studied. Semiconductor nanocrystals were synthesized by colloidal chemistry methods. The product mixture was a solution of quantum dots in an aqueous medium. To investigate the optical properties of CdTe/SiO2 nanoparticles in an external electric field, a series of samples was fabricated on the basis of an optically passive cellulose film, in the pores of which quantum dots were embedded. The final sample was a cellulose film with quantum dots sandwiched between two glasses with transparent indium tin oxide electrodes. The strength of the constant electric field applied to such structures reached 140 kV/cm. Photoluminescence spectra of the investigated nanostructures were recorded using a CCD spectrometer. As a result of the experiments it was found that the presence and subsequent increase of the external electric field leads to quenching of the intensity of both band-edge and traprelated photoluminescence of quantum dots. This fact is associated with a decrease in the overlap between electron and hole wave functions under the action of the electric field. It is also shown that at moderate field strength there is a slight increase in the total photoluminescence intensity. This observation can be related to impeded charge carrier trapping. The demonstrated quenching of luminescence intensity is also consistent with the results of other authors who have shown a decrease in the absorption of quantum dots in external electric fields. The stability of colorimetric characteristics of the spherical nanoparticles in an external electric field has been demonstrated. The results of the study can be used for development of optoelectronic devices based on CdTe/SiO2 nanoparticles. 

Keywords: photoluminescence, cadmium telluride, silicon dioxide, quantum dots, electric field, colorimetry

Acknowledgements. Authors are grateful to the Dean of the Faculty of Physics of Voronezh State University O.V. Ovchinnikov as well as to Associate Professor of the Department of Optics and Spectroscopy of Voronezh State University M.S. Smirnov for providing the nanostructures.

References
  1. Vashchenko A.A., Vitukhnovskii A.G., Lebedev V.S., Selyukov A.S., Vasiliev R.B. Sokolikova M.S. Organic light-emitting diode with an emitter based on a planar layer of CdSe semiconductor nanoplatelets. JETP Letters, 2014, vol. 100, no. 2, pp. 86–90. https://doi.org/10.1134/s0021364014140124
  2. Korolev N.V., Smirnov M.S., Ovchinnikov O.V., Shatskikh T.S. Energy structure and absorption spectra of colloidal CdS nanocrystals in gelatin matrix. Physica E: Low-dimensional Systems and Nanostructures, 2015, vol. 68, pp. 159–163. https://doi.org/10.1016/j.physe.2014.10.042
  3. Andryushkin V.V., Dragunova A.S., Komarov S.D., Nadtochiy A.M., Gladyshev A.G., Babichev A.V., Uvarov A.V., Novikov I.I., Kolodeznyi E.S., Karachinsky L.Ya., Kryzhanovskaya N.V., Nevedomskii V.N., Egorov A.Yu., Bougrov V.E. Influence of low temperatures and thermal annealing on the optical properties of InGaPAs quantum dots. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 5, pp. 921–928. (in Russian). https://doi.org/10.17586/2226-1494-2022-22-5-921-928
  4. Daibagya D.S., Ambrozevich S.A., Perepelitsa A.S., Zakharchuk I.A., Osadchenko A.V., Bezverkhnyaya D.M., Avramenko A.I., Selyukov A.S. Spectral and kinetic properties of silver sulfide quantum dots in an external electric field. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 6, pp. 1098–1103. (in Russian). https://doi.org/10.17586/2226-1494-2022-22-6-1098-1103
  5. Ovchinnikov O.V., Smirnov M.S., Shatskikh T.S., Latyshev A.N., Khokhlov V.Y., Shapiro B.I., Mien P.T.H. Spectral manifestations of hybrid association of cds colloidal quantum dots with methylene blue molecules. Optics and Spectroscopy, 2013, vol. 115, no. 3, pp. 340–348. https://doi.org/10.1134/S0030400X1309018X
  6. Ahmad A.K., Mohammed A.H., Skaptsov A.A. Luminescence technique for studying the growth of AgInS2 quantum dots. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 6, pp. 1078–1084. https://doi.org/10.17586/2226-1494-2022-22-6-1078-1084
  7. Ganeev R.A., Boltaev G.S., Kim V.V., Zhang K., Zvyagin A.I., Smirnov M.S., Ovchinnikov O.V., Redkin P.V., Wöstmann M., Zacharias H., Guo C. Effective high-order harmonic generation from metal sulfide quantum dots. Optics Express, 2018, vol. 26, no. 26, pp. 35013–35025. https://doi.org/10.1364/OE.26.035013
  8. Derepko V.N., Ovchinnikov O.V., Smirnov M.S., Grevtseva I.G., Kondratenko T.S., Selyukov A.S., Turishchev S.Y. Plasmon-exciton nanostructures, based on CdS quantum dots with exciton and trap state luminescence. Journal of Luminescence, 2022, vol. 248, pp. 118874. https://doi.org/10.1016/j.jlumin.2022.118874
  9. Kondratenko T.S., Grevtseva I.G., Zvyagin A.I., Ovchinnikov O.V., Smirnov M.S. Luminescence and nonlinear optical properties of hybrid associates of Ag2S quantum dots with molecules of thiazine dyes. Optics and Spectroscopy, 2018, vol. 124, no. 5, pp. 673–680. https://doi.org/10.1134/S0030400X18050090
  10. Norris D.J., Bawendi M.G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Physical Review B, 1996, vol. 53, no. 24, pp. 16338–16346. https://doi.org/10.1103/PhysRevB.53.16338
  11. Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, vol. 271, no. 5251, pp. 933–937. https://doi.org/10.1126/science.271.5251.933
  12. Burda C., Chen X., Narayanan R., El-Sayed M.A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, vol. 105, no. 4, pp. 1025–1102. https://doi.org/10.1021/cr030063a
  13. Ganeev R.A., Zvyagin A.I., Ovchinnikov O.V., Smirnov M.S. Peculiarities of the nonlinear optical absorption of Methylene blue and Thionine in different solvents. Dyes and Pigments, 2018, vol. 149, pp. 236–241. https://doi.org/10.1016/j.dyepig.2017.09.063
  14. Manna L., Scher E.C., Alivisatos A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. Journal of the American Chemical Society, 2000, vol. 122, no. 51, pp. 12700–12706. https://doi.org/10.1021/ja003055
  15. Ithurria S., Dubertret B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. Journal of the American Chemical Society, 2008, vol. 130, no. 49, pp. 16504–16505. https://doi.org/10.1021/ja807724e
  16. Selyukov A.S., Vitukhnovskii A.G., Lebedev V.S., Vashchenko A.A., Vasiliev R.B., Sokolikova M.S. Electroluminescence of colloidal quasi-two-dimensional semiconducting cdse nanostructures in a hybrid light-emitting diode. Journal of Experimental and Theoretical Physics, 2015, vol. 120, no. 4, pp. 595–606. https://doi.org/10.1134/S1063776115040238
  17. Bouet C., Mahler B., Nadal B., Abecassis B., Tessier M.D., Ithurria S., Xu X., Dubertret B. Two-dimensional growth of CdSe nanocrystals, from nanoplatelets to nanosheets. Chemistry of Materials, 2013, vol. 25, no. 4, pp. 639–645. https://doi.org/10.1021/cm304080q
  18. Hutter E.M., Bladt E., Goris B., Pietra F., Van Der Bok J.C., Boneschanscher M.P., de Mello Donegá C., Bals S., Vanmaekelbergh D. Conformal and atomic characterization of ultrathin CdSe platelets with a helical shape. Nano Letters, 2014, vol. 14, no. 11, pp. 6257–6262. https://doi.org/10.1021/nl5025744
  19. Daibagya D.S., Zakharchuk I.A., Osadchenko A.V., Selyukov A.S., Ambrozevich S.A., Skorikov M.L., Vasiliev R.B. Luminescence and colorimetric properties of ultrathin cadmium selenide nanoscrolls. Bulletin of the Lebedev Physics Institute, 2023, vol. 50, no. 11, pp. 510–514. https://doi.org/10.3103/S1068335623110118
  20. Vasiliev R.B., Sokolikova M.S., Vitukhnovskii A.G., Ambrozevich S.A., Selyukov A.S., Lebedev V.S. Optics of colloidal quantum-confined CdSe quantum nanoscrolls. Quantum Electronics, 2015, vol. 45, no. 9, pp. 853–857. https://doi.org/10.1070/QE2015v045n09ABEH015827
  21. Corrêa Santos D., Vieira Marques M.F. Blue light polymeric emitters for the development of OLED devices. Journal of Materials Science: Materials in Electronics, 2022, vol. 33, no. 16, pp. 12529–12565. https://doi.org/10.1007/s10854-022-08333-3
  22. Vashchenko A.A., Osadchenko A.V., Selyukov A.S., Ambrozevich S.A., Zakharchuk I.A., Daibagya D.S., Shliakhtun O., Volodin N.Yu., Cheptsov D.A., Dolotov S.M., Traven V.F. Electroluminescence of coumarin-based dyes. Bulletin of the Lebedev Physics Institute, 2022, vol. 49, no. 3, pp. 74–77. https://doi.org/10.3103/S106833562203006X
  23. Luo J., Rong X.-F., Ye Y.-Y., Li W.-Z., Wang X.-Q., Wang W. Research progress on triarylmethyl radical-based high-efficiency OLED. Molecules, 2022, vol. 27, no. 5, pp. 1632. https://doi.org/10.3390/molecules27051632
  24. Ho C.-L., Li H., Wong W.-Y. Red to near-infrared organometallic phosphorescent dyes for OLED applications. Journal of Organometallic Chemistry, 2014, vol. 751, pp. 261–285. https://doi.org/10.1016/j.jorganchem.2013.09.035
  25. Osadchenko A.V., Vashchenko A.A., Zakharchuk I.A., Daibagya D.S., Ambrozevich S.A., Volodin N.Yu., Cheptsov D.A., Dolotov S.M., Traven V.F., Avramenko A.I., Semenova S.L., Selyukov A.S. Organic light-emitting diodes with new dyes based on coumarin. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 6, pp. 1112–1118. (in Russian). https://doi.org/10.17586/2226-1494-2022-22-6-1112-1118
  26. Chen Z., Nadal B., Mahler B., Aubin H., Dubertret B. Quasi‐2D colloidal semiconductor nanoplatelets for narrow electroluminescence. Advanced Functional Materials. 2014, vol. 24, no. 3, pp. 295–302. https://doi.org/10.1002/adfm.201301711
  27. Vitukhnovsky A.G., Lebedev V.S., Selyukov A.S., Vashchenko A.A., Vasiliev R.B., Sokolikova M.S. Electroluminescence from colloidal semiconductor CdSe nanoplatelets in hybrid organic–inorganic light emitting diode. Chemical Physics Letters, 2015, vol. 619, pp. 185–188. https://doi.org/10.1016/j.cplett.2014.12.002
  28. Fan F., Kanjanaboos P., Saravanapavanantham M., Beauregard E., Ingram G., Yassitepe E., Adachi M., Voznyy O., Johnston A., Walters G., Kim G., Lu Z., Sargent E.H. Colloidal CdSe1–xSx nanoplatelets with narrow and continuously-tunable electroluminescence. Nano Letters, 2015, vol. 15, no. 7, pp. 4611–4615. https://doi.org/10.1021/acs.nanolett.5b01233
  29. Grim J.Q., Christodoulou S., Di Stasio F., Krahne R., Cingolani R., Manna L., Moreels I. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nature Nanotechnology, 2014, vol. 9, no. 11, pp. 891–895. https://doi.org/10.1038/nnano.2014.213
  30. Guzelturk B., Kelestemur Y., Olutas M., Delikanli S., Demir H.V. Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano, 2014, vol. 8, no. 7, pp. 6599–6605. https://doi.org/10.1021/nn5022296
  31. Lhuillier E., Dayen J.F., Thomas D.O., Robin A., Doudin B., Dubertret B. Nanoplatelets bridging a nanotrench: a new architecture for photodetectors with increased sensitivity. Nano Letters, 2015, vol. 15, no. 3, pp. 1736–1742. https://doi.org/10.1021/nl504414g
  32. Hohng S., Ha T. Near-complete suppression of quantum dot blinking in ambient conditions. Journal of the American Chemical Society, 2004, vol. 126, no. 5, pp. 1324–1325. https://doi.org/10.1021/ja039686w
  33. Shim H.S., Ko M., Nam S., Oh J.H., Jeong S., Yang Y., Park S.M., Do Y.R., Song J.K. InP/ZnSeS/ZnS quantum dots with high quantum yield and color purity for display devices. ACS Applied Nano Materials, 2023, vol. 6, no. 2, pp. 1285–1294. https://doi.org/10.1021/acsanm.2c04936
  34. Dabbousi B.O., Rodriguez-Viejo J., Mikulec F.V., Heine J.R., Mattoussi H., Ober R., Jensen K.F., Bawendi M.G. (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B, 1997, vol. 101, no. 46, pp. 9463–9475. https://doi.org/10.1021/jp971091y
  35. Ovchinnikov O., Aslanov S., Smirnov M., Perepelitsa A., Kondratenko T., Selyukov A., Grevtseva I. Colloidal Ag2S/SiO2 core/shell quantum dots with IR luminescence. Optical Materials Express, 2021, vol. 11, no. 1, pp. 89–104. https://doi.org/10.1364/OME.411432
  36. Malashin I.P., Daibagya D.S., Tynchenko V.S., Nelyub V.A., Borodulin A.S., Gantimurov A.P., Ambrozevich S.A., Selyukov A.S. ML-based forecasting of temporal dynamics in luminescence spectra of Ag2S colloidal quantum dots. IEEE Access, 2024, vol. 12, pp. 53320−53334. https://doi.org/10.1109/ACCESS.2024.3387024
  37. Achtstein A.W., Schliwa A., Prudnikau A., Hardzei M., Artemyev M.V., Thomsen C., Woggon U. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Letters, 2012, vol. 12, no. 6, pp. 3151−3157. https://doi.org/10.1021/nl301071n
  38. Wuister S.F., de Mello Donegá C., Meijerink A. Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent. Journal of the American Chemical Society, 2004, vol. 126, no. 33, pp. 10397−10402. https://doi.org/10.1021/ja048222a
  39. Bozyigit D., Yarema O., Wood V. Origins of low quantum efficiencies in quantum dot LEDs. Advanced Functional Materials, 2013, vol. 23, no. 24, pp. 3024−3029. https://doi.org/10.1002/adfm.201203191
  40. Gurinovich L.I., Lutich A.A., Stupak A.P., Prislopsky S.Y., Gaponenko S.V., Rusakov E.K., Artemyev M.V., Demir H.V. Luminescence in quantum-confined cadmium selenide nanocrystals and nanorods in external electric fields. Semiconductors, 2009, vol. 43, no. 8, pp. 1008−1016. https://doi.org/10.1134/S1063782609080090
  41. Wang Z., Huang Z., Liu G., Cai B., Zhang S., Wang Y. In‐situ and reversible enhancement of photoluminescence from CsPbBr3 nanoplatelets by electrical bias. Advanced Optical Materials, 2021, vol. 9, no. 15, pp. 2100346. https://doi.org/10.1002/adom.202100346
  42. Gulyaev D.V., Zhuravlev K.S. Mechanism of the effect of the electric field of a surface acoustic wave on the low-temperature photoluminescence kinetics in type-II GaAs/AlAs superlattices. Semiconductors, 2007, vol. 41, no. 2, pp. 205−210. https://doi.org/10.1134/S1063782607020170
  43. Daibagya D.S., Ambrozevich S.A., Perepelitsa A.S., Zakharchuk I.A., Smirnov M.S., Ovchinnikov O.V., Aslanov S.V., Osadchenko A.V., Selyukov A.S. Electric field influence on the recombination luminescence of the colloidal silver sulfide quantum dots. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 3(108), pp. 100–117. (in Russian). https://doi.org/10.18698/1812-3368-2023-3-100-117
  44. Badawi A., Al-Hosiny N., Abdallah S., Negm S., Talaat H. Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Solar Energy, 2013, vol. 88, pp. 137−143. https://doi.org/10.1016/j.solener.2012.11.005
  45. Wu S., Xia W. Exciton polarizability and absorption spectra in CdSe/ZnS nanocrystal quantum dots in electric fields. Journal of Applied Physics, 2013, vol. 114, no. 4, pp. 043709. https://doi.org/10.1063/1.4816559
  46. Rabouw F.T., Van Der Bok J.C., Spinicelli P., Mahler B., Nasilowski M., Pedetti S., Dubertret B., Vanmaekelbergh D. Temporary charge carrier separation dominates the photoluminescence decay dynamics of colloidal CdSe nanoplatelets. Nano Letters, 2016, vol. 16, no. 3, pp. 2047−2053. https://doi.org/10.1021/acs.nanolett.6b00053
  47. Rabouw F.T., Kamp M., van Dijk-Moes R.J., Gamelin D.R., Koenderink A.F., Meijerink A., Vanmaekelbergh D. Delayed exciton emission and its relation to blinking in CdSe quantum dots. Nano Letters, 2015, vol. 15, no. 11, pp. 7718−7725. https://doi.org/10.1021/acs.nanolett.5b03818
  48. McCamy C.S. Correlated color temperature as an explicit function of chromaticity coordinates. Color Research & Application, 1992, vol. 17, no. 2, pp. 142−144. https://doi.org/10.1002/col.5080170211
  49. Daibagya D.S. Spectral and kinetic characteristics of ultrathin cadmium selenide nanoscrolls. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 5, pp. 920–926. (in Russian). https://doi.org/10.17586/2226-1494-2023-23-5-920-926
  50. Zhbanova V.L. Color triangle color separation system for colorimetric research in microscopy. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 2, pp. 236–244. (in Russian). https://doi.org/10.17586/2226-1494-2023-23-2-236-244
  51. Miller D.A.B., Chemla D.S., Damen T.C., Gossard A.C., Wiegmann W., Wood T.H., Burrus C.A. Electric field dependence of optical absorption near the band gap of quantum-well structures. Physical Review B, 1985, vol. 32, no. 2, pp. 1043–1060. https://doi.org/10.1103/PhysRevB.32.1043
  52. Xie Y., Cui Y., Zhang L., Yang M. Effect of electron–hole separation on the spectral diffusion of small-sized CdSe quantum dots under an external electric field. The Journal of Physical Chemistry C, 2023, vol. 127, no. 5, pp. 2603−2611. https://doi.org/10.1021/acs.jpcc.2c07402
  53. Achtstein A.W., Prudnikau A.V., Ermolenko M.V., Gurinovich L.I., Gaponenko S.V., Woggon U., Baranov A.V., Leonov M.Y., Rukhlenko I.D., Fedorov A.V., Artemyev M.V. Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets. ACS Nano, 2014, vol. 8, no. 8, pp. 7678−7686. https://doi.org/10.1021/nn503745u


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика