Menu
Publications
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief
Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2024-24-3-448-455
Polymer-salt synthesis and study on structure of vanadium-doped yttrium-aluminum garnet
Read the full article ';
Article in Russian
For citation:
Abstract
For citation:
Evstropiev S.K., Ostrovskii V.A., Makarov K.N., Bulyga D.V., Volynkin V.M., Sandulenko A.V., Dukelskii K.V., Polishchuk G.S. Polymer-salt synthesis and study on structure of vanadium-doped yttrium-aluminum garnet. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 3, pp. 448–455 (in Russian). doi: 10.17586/2226-1494-2024-24-3-448-455
Abstract
Nanoscaled YAG:V powders were synthesized using low-temperature polymer-salt method. A comparison of their structure with monocrystals structure was performed. Structure, morphology and chemical composition of materials were studied using XRD, SEM and energy-dispersive X-ray spectroscopy. Estimation of average sizes of nanocrystals and crystal cell parameters was performed based on XRD data. The results were compared with the results obtained earlier for YAG:V monocrystals. Nanopowders synthesized at 1000 °C consist from microscopic aggregates of YAG:V nanocrystals with average size of 43 nm and crystal structure characteristic for YAG monocrystals. It was found that V3+ incorporation and their substitution of aluminum ions leads to distortion of crystal cell. It was shown that this phenomenon is observed both in YAG:V monocrystals and nanopowders synthesized using low-temperature polymer-salt method. The infrared spectroscopy data shows the similarity of the monocrystal and nanopowders structure. Obtained powders can be applied for fabrication of light-absorbing optical ceramics and organo-inorganic composites.
Keywords: yttrium-aluminum garnet, vanadium, crystal, unit cell, nanopowder
References
References
- Laguta V., Buryi M., Beitlerova A., Laguta O., Nejezchleb K., Nikl M. Vanadium in yttrium aluminum garnet: charge states and localization in the lattice. Optical Materials, 2019, vol. 91, pp. 228–234. https://doi.org/10.1016/j.optmat.2019.03.024
- Kruczek M., Talik E., Kusz J., Sakowska H., Świrkowicz M., Weglarz H. Electronic structure of Y3Al5O12:V single crystals, comparison with sintered ceramics. Acta Physica Polonica A, 2009, vol. 115, no. 1, pp. 209–212. https://doi.org/10.12693/aphyspola.115.209
- Sulc J., Jelinkova H., Nemec M., Nejezchleb K., Skoda V. V:YAG saturable absorber for flash-lamp and diode-pumped solid state lasers. Proceedings of SPIE, 2004, vol. 5460. https://doi.org/10.1117/12.544822
- Huang H.-T., Zhang B.-T., He J.-L., Yang J.-F., Xu J.-L., Yang X.-Q., Zuo C.-H., Zhao S. Diode-pumped passively Q-switched Nd:Gd0.5Y0.5VO4 laser at 1.34μm with V3+:YAG as the saturable absorber. Optics Express, 2009, vol. 17, no. 9, pp. 6946–6951. https://doi.org/10.1364/OE.17.006946
- Mikhailov V.P., Kuleshov N.V., Zhavoronkov N.I., Prokohsin P.V., Yumashev K.V., Sandulenko V.A. Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet. Optical Materials, 1993, vol. 2, no. 4, pp. 267–272. https://doi.org/10.1016/0925-3467(93)90023-T
- Huang H.-T., He J.-L., Zhang B.-T., Yang J.-F., Xu J.-L., Zuo C.-H., Tao X.-T. V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser. Optics Express, 2010, vol. 18, no. 4, pp. 3352–3357. https://doi.org/10.1364/OE.18.003352
- Weber M.J., Riseberg L.A. Optical spectra of vanadium ions in yttrium aluminum garnet. Journal of Chemical Physics, 1971, vol. 55, no. 5, pp. 2032–2038. https://doi.org/10.1063/1.1676370
- Kim T., Lee J.-K. Template-free synthesis and characterization of spherical Y3Al5O12:Ce3+ (YAG:Ce) nanoparticles. Bulletin of the Korean Chemical Society, 2014, vol. 35, no. 10, pp. 2917–2921. https://doi.org/10.5012/bkcs.2014.35.10.2917
- Sokolov I.S., Maslennikov S.Y., Evstropiev S.K., Mironov L.Y., Nikonorov N.V., Oreshkina K.V. YAG:Ce3+ phosphor nanopowders and thin textured coatings prepared by polymer-salt method. Optical Engineering, 2019, vol. 58, no. 2, pp. 027103. https://doi.org/10.1117/1.oe.58.2.027103
- He X., Liu X., Li R., Yang B., Yu K., Zeng M., Yu R. Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles. Scientific Reports, 2016, vol. 6, pp. 22238. https://doi.org/10.1038/srep22238
- Moussaoui A., Bulyga D.V., Ignatiev A.I., Evstropiev S.K., Nikonorov N.V. Structural and spectral properties of YAG:Nd, YAG:Ce and YAG:Yb nanocrystalline powders synthesized via modified Pechini method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 1, pp. 1–10. (in Russian). https://doi.org/10.17586/2226-1494-2024-24-1-1-10
- Veith M., Mathur S., Kareiva A., Jilavi M., Zimmer M., Huch V. Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods. Journal of Materials Chemistry, 1999, vol. 9, no. 12, pp. 3069–3079. https://doi.org/10.1039/A903664D
- Bulyga D.V., Evstropiev S.K. Intermediate products of Yb:YAG laser ceramics fabrication: structural features, morphology, and luminescent properties. Research on Chemical Intermediates, 2021, vol. 47, no. 8, pp. 3501–3514. https://doi.org/10.1007/s11164-021-04484-w
- Ma B., Wang B., Zhang W., Wei N., Lu T., He J. Promotion of powder crystallinity and its influence on the properties of Nd:YAG transparent ceramics. Optical Materials, 2017, vol. 64, pp. 384–390. https://doi.org/10.1016/j.optmat.2017.01.006
- Lukowiak A., Wiglusz R.J., Maczka M., Gluchowski P., Strek W. IR and Raman spectroscopy study of YAG nanoceramics. Chemical Physics Letters, 2010, vol. 494, no. 4-6, pp. 279–283. https://doi.org/10.1016/j.cplett.2010.06.033
- Tucureanu V., Matei A., Avram A.M. Synthesis and characterization of YAG:Ce phosphors for white LEDs. Opto-Electronics Review, 2015, vol. 23, no. 4, pp. 239–251. https://doi.org/10.1515/oere-2015-0038
- Timoshenko A.D., Doroshenko A.G., Parkhomenko S.V., Vorona I.O., Kryzhanovska O.S., Safronova N.A., Vovk O.O., Tolmachev А.V., Baumer V.N., Matolínová I., Yavetskiy R.P. Effect of the sintering temperature on microstructure and optical properties of reactive sintered YAG:Sm3+ ceramics. Optical Materials: X, 2022, vol. 13, pp. 100131. https://doi.org/10.1016/j.omx.2021.100131
- Timoshenko A.D., Matvienko O.O., Doroshenko A.G., Parkhomenko S.V., Vorona I.O., Kryzhanovska O.S., Safronova N.A., Vovk O.O., Tolmachev А.V., Baumer V.N., Matolínová I., Hau S., Georghe C., Yavetskiy R.P. Highly-doped YAG:Sm3+ transparent ceramics: Effect of Sm3+ ions concentration. Ceramics International, 2023, vol. 49, no. 5, pp. 7524–7533. https://doi.org/10.1016/j.ceramint.2022.10.257
- Kostić S., Lazarević Z.Ž., Radojević M., Milutinović A., Romčević M., Romčević N.Ž., Valčić A. Study of Structural and optical properties of YAG and Nd:YAG single crystals. Materials Research Bulletin, 2015, vol. 63, pp. 80–87. https://doi.org/10.1016/j.materresbull.2014.11.033
- Shennon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallography, 1976, vol. A32, pp. 751–767. https://doi.org/10.1107/s0567739476001551
- Zhang L., Li Z., Zhen F., Wang L., Zhang Q., Sun R., Selim F.A., Wong C., Chen H. High sinterability nano-Y2O3 powders prepared via decomposition of hydroxyl-carbonate precursors for transparent ceramics. Journal of Materials Science, 2017, vol. 52, no. 14, pp. 8556–8567. https://doi.org/10.1007/s10853-017-1071-0
- Gorbachenya K.N., Yasukevich A.S., Kisel V.K., Lopukhin K.V., Balashov V.V., Fedin A.V., Gerke M.N., Volkova E.A., Yapaskurt V.O., Kuzmin N.N., Ksenofontov D.A., Korost D.V., Kuleshov N.V. Synthesis and laser-related spectroscopy of Er:Y2O3 optical ceramics as a gain medium for in-band-pumped 1.6 µm lasers. Crystals, 2022, vol. 12, no. 4, pp. 519. https://doi.org/10.3390/cryst12040519
- Bulyga D.V., Evstropiev S.K., Sadovnichii R.V., Khodasevich M.A. Influence of isomorphic substitution of Y3+ ions by Gd3+ ions on structural and luminescent properties of Yb:YAG nanopowders. Materials Science and Engineering: B, 2022, vol. 285, pp. 115980. https://doi.org/10.1016/j.mseb.2022.115980