doi: 10.17586/2226-1494-2024-24-3-448-455


Polymer-salt synthesis and study on structure of vanadium-doped yttrium-aluminum garnet

S. K. Evstropiev, V. A. Ostrovskii, K. N. Makarov, D. V. Bulyga, V. M. Volynkin, A. V. Sandulenko, K. V. Dukelskii, G. S. Polishchuk


Read the full article  ';
Article in Russian

For citation:
Evstropiev S.K., Ostrovskii V.A., Makarov K.N., Bulyga D.V., Volynkin V.M., Sandulenko A.V., Dukelskii K.V., Polishchuk G.S. Polymer-salt synthesis and study on structure of vanadium-doped yttrium-aluminum garnet. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 3, pp. 448–455 (in Russian). doi: 10.17586/2226-1494-2024-24-3-448-455


Abstract
Nanoscaled YAG:V powders were synthesized using low-temperature polymer-salt method. A comparison of their structure with monocrystals structure was performed. Structure, morphology and chemical composition of materials were studied using XRD, SEM and energy-dispersive X-ray spectroscopy. Estimation of average sizes of nanocrystals and crystal cell parameters was performed based on XRD data. The results were compared with the results obtained earlier for YAG:V monocrystals. Nanopowders synthesized at 1000 °C consist from microscopic aggregates of YAG:V nanocrystals with average size of 43 nm and crystal structure characteristic for YAG monocrystals. It was found that V3+ incorporation and their substitution of aluminum ions leads to distortion of crystal cell. It was shown that this phenomenon is observed both in YAG:V monocrystals and nanopowders synthesized using low-temperature polymer-salt method. The infrared spectroscopy data shows the similarity of the monocrystal and nanopowders structure. Obtained powders can be applied for fabrication of light-absorbing optical ceramics and organo-inorganic composites.

Keywords: yttrium-aluminum garnet, vanadium, crystal, unit cell, nanopowder

References
  1. Laguta V., Buryi M., Beitlerova A., Laguta O., Nejezchleb K., Nikl M. Vanadium in yttrium aluminum garnet: charge states and localization in the lattice. Optical Materials, 2019, vol. 91, pp. 228–234. https://doi.org/10.1016/j.optmat.2019.03.024
  2. Kruczek M., Talik E., Kusz J., Sakowska H., Świrkowicz M., Weglarz H. Electronic structure of Y3Al5O12:V single crystals, comparison with sintered ceramics. Acta Physica Polonica A, 2009, vol. 115, no. 1, pp. 209–212. https://doi.org/10.12693/aphyspola.115.209
  3. Sulc J., Jelinkova H., Nemec M., Nejezchleb K., Skoda V. V:YAG saturable absorber for flash-lamp and diode-pumped solid state lasers. Proceedings of SPIE, 2004, vol. 5460. https://doi.org/10.1117/12.544822
  4. Huang H.-T., Zhang B.-T., He J.-L., Yang J.-F., Xu J.-L., Yang X.-Q., Zuo C.-H., Zhao S. Diode-pumped passively Q-switched Nd:Gd0.5Y0.5VO4 laser at 1.34μm with V3+:YAG as the saturable absorber. Optics Express, 2009, vol. 17, no. 9, pp. 6946–6951. https://doi.org/10.1364/OE.17.006946
  5. Mikhailov V.P., Kuleshov N.V., Zhavoronkov N.I., Prokohsin P.V., Yumashev K.V., Sandulenko V.A. Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet. Optical Materials, 1993, vol. 2, no. 4, pp. 267–272. https://doi.org/10.1016/0925-3467(93)90023-T
  6. Huang H.-T., He J.-L., Zhang B.-T., Yang J.-F., Xu J.-L., Zuo C.-H., Tao X.-T. V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser. Optics Express, 2010, vol. 18, no. 4, pp. 3352–3357. https://doi.org/10.1364/OE.18.003352
  7. Weber M.J., Riseberg L.A. Optical spectra of vanadium ions in yttrium aluminum garnet. Journal of Chemical Physics, 1971, vol. 55, no. 5, pp. 2032–2038. https://doi.org/10.1063/1.1676370
  8. Kim T., Lee J.-K. Template-free synthesis and characterization of spherical Y3Al5O12:Ce3+ (YAG:Ce) nanoparticles. Bulletin of the Korean Chemical Society, 2014, vol. 35, no. 10, pp. 2917–2921. https://doi.org/10.5012/bkcs.2014.35.10.2917
  9. Sokolov I.S., Maslennikov S.Y., Evstropiev S.K., Mironov L.Y., Nikonorov N.V., Oreshkina K.V. YAG:Ce3+ phosphor nanopowders and thin textured coatings prepared by polymer-salt method. Optical Engineering, 2019, vol. 58, no. 2, pp. 027103. https://doi.org/10.1117/1.oe.58.2.027103
  10. He X., Liu X., Li R., Yang B., Yu K., Zeng M., Yu R. Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles. Scientific Reports, 2016, vol. 6, pp. 22238. https://doi.org/10.1038/srep22238
  11. Moussaoui A., Bulyga D.V., Ignatiev A.I., Evstropiev S.K., Nikonorov N.V. Structural and spectral properties of YAG:Nd, YAG:Ce and YAG:Yb nanocrystalline powders synthesized via modified Pechini method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 1, pp. 1–10. (in Russian). https://doi.org/10.17586/2226-1494-2024-24-1-1-10
  12. Veith M., Mathur S., Kareiva A., Jilavi M., Zimmer M., Huch V. Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods. Journal of Materials Chemistry, 1999, vol. 9, no. 12, pp. 3069–3079. https://doi.org/10.1039/A903664D
  13. Bulyga D.V., Evstropiev S.K. Intermediate products of Yb:YAG laser ceramics fabrication: structural features, morphology, and luminescent properties. Research on Chemical Intermediates, 2021, vol. 47, no. 8, pp. 3501–3514. https://doi.org/10.1007/s11164-021-04484-w
  14. Ma B., Wang B., Zhang W., Wei N., Lu T., He J. Promotion of powder crystallinity and its influence on the properties of Nd:YAG transparent ceramics. Optical Materials, 2017, vol. 64, pp. 384–390. https://doi.org/10.1016/j.optmat.2017.01.006
  15. Lukowiak A., Wiglusz R.J., Maczka M., Gluchowski P., Strek W. IR and Raman spectroscopy study of YAG nanoceramics. Chemical Physics Letters, 2010, vol. 494, no. 4-6, pp. 279–283. https://doi.org/10.1016/j.cplett.2010.06.033
  16. Tucureanu V., Matei A., Avram A.M. Synthesis and characterization of YAG:Ce phosphors for white LEDs. Opto-Electronics Review, 2015, vol. 23, no. 4, pp. 239–251. https://doi.org/10.1515/oere-2015-0038
  17. Timoshenko A.D., Doroshenko A.G., Parkhomenko S.V., Vorona I.O., Kryzhanovska O.S., Safronova N.A., Vovk O.O., Tolmachev А.V., Baumer V.N., Matolínová I., Yavetskiy R.P. Effect of the sintering temperature on microstructure and optical properties of reactive sintered YAG:Sm3+ ceramics. Optical Materials: X, 2022, vol. 13, pp. 100131. https://doi.org/10.1016/j.omx.2021.100131
  18. Timoshenko A.D., Matvienko O.O., Doroshenko A.G., Parkhomenko S.V., Vorona I.O., Kryzhanovska O.S., Safronova N.A., Vovk O.O., Tolmachev А.V., Baumer V.N., Matolínová I., Hau S., Georghe C., Yavetskiy R.P. Highly-doped YAG:Sm3+ transparent ceramics: Effect of Sm3+ ions concentration. Ceramics International, 2023, vol. 49, no. 5, pp. 7524–7533. https://doi.org/10.1016/j.ceramint.2022.10.257
  19. Kostić S., Lazarević Z.Ž., Radojević M., Milutinović A., Romčević M., Romčević N.Ž., Valčić A. Study of Structural and optical properties of YAG and Nd:YAG single crystals. Materials Research Bulletin, 2015, vol. 63, pp. 80–87. https://doi.org/10.1016/j.materresbull.2014.11.033
  20. Shennon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallography, 1976, vol. A32, pp. 751–767. https://doi.org/10.1107/s0567739476001551
  21. Zhang L., Li Z., Zhen F., Wang L., Zhang Q., Sun R., Selim F.A., Wong C., Chen H. High sinterability nano-Y2O3 powders prepared via decomposition of hydroxyl-carbonate precursors for transparent ceramics. Journal of Materials Science, 2017, vol. 52, no. 14, pp. 8556–8567. https://doi.org/10.1007/s10853-017-1071-0
  22. Gorbachenya K.N., Yasukevich A.S., Kisel V.K., Lopukhin K.V., Balashov V.V., Fedin A.V., Gerke M.N., Volkova E.A., Yapaskurt V.O., Kuzmin N.N., Ksenofontov D.A., Korost D.V., Kuleshov N.V. Synthesis and laser-related spectroscopy of Er:Y2O3 optical ceramics as a gain medium for in-band-pumped 1.6 µm lasers. Crystals, 2022, vol. 12, no. 4, pp. 519. https://doi.org/10.3390/cryst12040519
  23. Bulyga D.V., Evstropiev S.K., Sadovnichii R.V., Khodasevich M.A. Influence of isomorphic substitution of Y3+ ions by Gd3+ ions on structural and luminescent properties of Yb:YAG nanopowders. Materials Science and Engineering: B, 2022, vol. 285, pp. 115980. https://doi.org/10.1016/j.mseb.2022.115980


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика