doi: 10.17586/2226-1494-2024-24-4-529-537


Organic-inorganic light-absorbing composites for near infrared part of spectrum

S. K. Evstropiev, V. M. Volynkin, D. V. Bulyga, V. A. Ostrovskii, K. N. Makarov, K. V. Dukelskii, G. S. Polishchuk


Read the full article  ';
Article in Russian

For citation:
Evstropiev S.K., Volynkin V.M., Bulyga D.V., Ostrovskii V.A., Makarov K.N., Dukelskii K.V., Polishchuk G.S. Organic-inorganic light-absorbing composites for near infrared part of spectrum. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 4, pp. 529–537 (in Russian). doi: 10.17586/2226-1494-2024-24-4-529-537


Abstract
Synthesis and study on structure and properties of organic-inorganic composites based on epoxy resin, CuO and Fe3O4 absorbing light in infrared part of spectrum was performed. The composites synthesis was performed by introduction of CuO and Fe3O4 micropowders into liquid epoxy composition with subsequent homogenization of the mixture and polymerization. The study on structure and properties of organic-inorganic composites was performed by methods of optical microscopy, infrared and visible spectroscopy, study on microhardness. According to the IR spectroscopy data, introduction of oxide particles leads to decrease in epoxy polymer degree of calcification. The composites containing Fe3O4 show relatively low light reflection until 4.2 % in the spectral range of 1000–1100 nm that corresponds to the theoretical estimation data. Incorporation of CuO and Fe3O4 micropowders into the epoxy polymer leads to an increase in microhardness from 120 to 160 MPa. Obtained experimental data can serve as the base for development of IR-absorbing organic-inorganic composites for laser technology.

Keywords: light absorption, composite, epoxy resin, micropowder

References
  1. Ting T.H. Synthesis, characterization of Fe3O4/polymer composites with stealth capabilities. Results in Physics, 2020, vol. 16, pp. 102975. https://doi.org/10.1016/j.rinp.2020.102975
  2. Kulagina A.S., Sandulenko A.V., Volynkin V.M., Evstropiev S.K. Synthesis and nonlinear optical properties of vanadium-doped plasticized epoxy polymer composites. Advanced Composites and Hybrid Materials, 2021, vol. 4, no. 2, pp. 324. https://doi.org/10.1007/s42114-021-00227-y
  3. Volynkin V.M., Evstropiev S.K., Bulyga D.V., Morkovsky A.V., Pashin S.S., Dukelskiy K.V., Bourdine A.V., Bondarenko I.B. Optical composites based on organic polymers and semiconductor pigments. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 1, pp. 10–17. (in Russian). https://doi.org/10.17586/2226-1494-2022-22-1-10-17
  4. Kiselev V.M., Burchinov A.A., Volynkin V.M., Matveentsev A.V., Evstropev S.K. Composite light-absorbent coatings based on hollow oxide microspheres and lead sulfide. Journal of Optical Technology, 2015, vol. 82, no. 12, pp. 824–826. https://doi.org/10.1364/jot.82.000824
  5. Belousova I.M., Videnichev D.A., Volynkin V.M., Evstropiev S.K., Kislyakov I.M., Murav’ova T.D., Rakov E.G. Nonlinear optical limiters of pulsed laser radiation based on carbon‐containing nanostructures in viscous and solid matrices. Polymers for Advanced Technologies, 2014, vol. 25, no. 9, pp. 1008–1013. https://doi.org/10.1002/pat.3343
  6. Bezrodnyĭ V.I., Tikhonov E.A. Polymer passive Q switch. Soviet Journal of Quantum Electronics, 1986, vol. 16, no. 12, pp. 1642–1645. https://doi.org/10.1070/QE1986v016n12ABEH008515
  7. Mironov L.Yu., Evstropiev S.K. Temperature-sensitive luminescent photopolymer activated by europium β-diketonate complexes. Optical Engineering, 2019, vol. 58, no. 2, pp. 027113. https://doi.org/10.1117/1.OE.58.2.027113
  8. Natsik V.D., Fomenko L.S., Lubenets S.V. Investigation of the creep and glass transition of elastomers by the microindentation method: epoxy resin and related nanocomposites. Physics of the Solid State, 2013, vol. 55, no. 5, pp. 1020–1033. https://doi.org/10.1134/s1063783413050260
  9. Farzanehfar N., Taheri A., Rafiemanzelat F., Jazani O.M. High-performance epoxy nanocomposite adhesives with enhanced mechanical, thermal and adhesion properties based on new nanoscale ionic materials. Chemical Engineering Journal, 2023, vol. 471, pp. 144428. https://doi.org/10.1016/j.cej.2023.144428
  10. Usay Ş., Yaykaşli H., Acer D.C. Microhardness and thermal resistance of epoxy composites reinforced with graphene nanoparticle doped carbon nanotubes. Journal of NanoScience in Advanced Materials, 2022, vol. 1, no. 1, pp. 6–11. https://doi.org/10.5281/zenodo.7464972
  11. Sun T., Fan H., Wang Z., Liu X., Wu Z. Modified nano Fe2O3-epoxy composite with enhanced mechanical properties. Materials & Design, 2015, vol. 87, pp. 10–16. https://doi.org/10.1016/j.matdes.2015.07.177
  12. Nazarzade S., Ghorbani H.R. Synthesis of CuO/Epoxy nanocomposites for the preparation of antifungal coating. Nanomedicine Journal, 2019, vol. 6, no. 2, pp. 142–146. https://doi.org/10.22038/NMJ.2019.06.0009
  13. Mahadeva Raju G.K., Madhu G.M., Dinesh Sankar Reddy P., Karthik K.V. Mechanical and thermal properties of epoxy polymer composites reinforced with CuO. YMER, 2021, vol. 20, no. 12, pp. 272–280.
  14. Chen Y., Zhang D., Wu X., Wang H., Zhang C., Yang W., Chen Y. Epoxy/α-alumina nanocomposite with high electrical insulation performance. Progress in Natural Science: Materials International, 2017, vol. 27, no. 5, pp. 574–581. https://doi.org/10.1016/j.pnsc.2017.09.003
  15. Singh S.K., Singh S., Kumar A., Jain A. Thermo-mechanical behavior of TiO2 dispersed epoxy composites. Engineering Fracture Mechanics, 2017, vol. 184, pp. 241–248. https://doi.org/10.1016/j.engfracmech.2017.09.005
  16. Chursova L.V., Panina N.N., Grebeneva T.A., Kutergina I.Iu. Epoxy Resins, Hardeners, Modifiers and Binding Agents Based on Them. Saint Petersburg, Professija Publ., 2020, 576 p. (in Russian)
  17. Ong H.R., Khan Md.M.R., Ramli R., Yunus R.M. Effect of CuO nanoparticle on mechanical and thermal properties of palm oil based alkyd/epoxy resin blend. Procedia Chemistry, 2015, vol. 16, pp. 623–631. https://doi.org/10.1016/j.proche.2015.12.101
  18. Bindal P., Shrivastava A. Study of thermal conductivity enhancement of epoxy with copper oxide(CuO). International Journal for Research in Engineering Application & Managemen, 2018, vol. 4, no. 8, pp. 81. https://doi.org/10.18231/2454-9150.2018.1057
  19. Sukhorukov Yu.P., Gizhevskii B.A., Mostovshchikova E.V., Yermakov A.Ye., Tugushev S.N., Kozlov E.A. Nanocrystalline copper oxide for selective solar energy absorbers. Technical Physics Letters, 2006, vol. 32, no. 2, pp. 132–135. https://doi.org/10.1134/s1063785006020131
  20. Sukhorukov Yu.P., Loshkareva N.N., Samokhvalov A.A., Moskvin A.S. Absorption spectra of CuO single crystals near the absorption edge and the nature of the optical gap in copper oxides. Journal of Experimental and Theoretical Physics, 1995, vol. 81, no. 5, pp. 998–1002. 
  21. Welegergs G.G., Akoba R., Sacky J., Nuru Z.Y. Structural and optical properties of copper oxide (CuO) nanocoatings as selective solar absorber. Materials Today: Proceedings, 2021, vol. 36, no. 2, pp. 509–513. https://doi.org/10.1016/j.matpr.2020.05.298
  22. Al-Masoodi A.H.H., Abdulghafoor O.B., Alani I.A.M., Ahmed M.H.M., Al Masoodi Ab.H.H., Harun S.W. Passively Q-switched pulses from ytterbium-doped fiber laser (YDFL) using copper oxide (CuO) nanoparticles as a saturable absorber. Optical Materials Express, 2020, vol. 10, no. 11, pp. 2896–2908. https://doi.org/10.1364/OME.403713
  23. Yerin K.V. Determination of the complex refractive index of nanoparticulate magnetite from optical anisotropy data for magnetic colloids. Inorganic Materials, 2022, vol. 58, no. 4, pp. 403–413. https://doi.org/10.1134/s0020168522040045
  24. Wang X., Wang Y.G., Mao D., Li L., Chen Z.D. Passively Q-switched Nd:YVO4 laser based on Fe3O4 nanoparticles saturable absorber. Optical Materials Express, 2017, vol. 7, no. 8, pp. 2913–2921. https://doi.org/10.1364/OME.7.002913
  25. Chen G., Yang Y., Tian M., Li C., Huang Y., Lv M. Passively Q-switched mode-locked ytterbium-doped fiber laser based on an Fe3O4-nanoparticle saturable absorber. Optical Materials Express, 2020, vol. 10, no. 2, pp. 588–596. https://doi.org/10.1364/OME.383188
  26. González M.G., Cabanelas J.C., Baselga J. Applications of FTIR on epoxy resins – identification, monitoring the curing process, phase separation and water uptake. Infrared Spectroscopy – Materials Science, Engineering and Technology. InTech, 2012, pp. 261–284. https://doi.org/10.5772/36323
  27. Rudakov O.B., Khorokhordina E.A., Glazkov S.S., Khorokhordin A.M., Gubin A.S. Control of the epoxy resin curing process according to the free bisphenol a content by TLC. Analytics and Control, 2017, vol. 21, no. 2, pp. 135–143. (in Russian). https://doi.org/10.15826/analitika.2017.21.2.004
  28. Wu Z., Chen J., Li Q., Xia D.-H., Deng Y., Zhang Y., Qin Z. Preparation and thermal conductivity of epoxy resin/graphene-Fe3O4 composites. Materials, 2021, vol. 14, no. 8, pp. 2013. https://doi.org/10.3390/ma14082013
  29. Born M., Wolf E. Principles of Optics. Cambridge University Press, 1959.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика