doi: 10.17586/2226-1494-2024-24-4-538-547


Study of pyroelectric effect and creation of modified design of phase modulator based on lithium niobate

A. V. Shulepova, V. A. Shulepov, V. E. Strigalev


Read the full article  ';
Article in Russian

For citation:
Shulepova A.V., Shulepov V.A., Strigalev V.E. Study of pyroelectric effect and creation of modified design of phase modulator based on lithium niobate. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 4, pp. 538–547 (in Russian). doi: 10.17586/2226-1494-2024-24-4-538-547


Abstract
The study explores the phenomenon of the pyroelectric effect and demonstrates its influence on the emergence of an additional phase shift of the passing light wave in waveguide structures of photonic integrated circuits formed on a lithium niobate crystal X-cut substrate. Measurements were carried out using interferometric methods in a Mach-Zehnder fiber-optic interferometer configuration with radiation modulation in the reference arm allowing for continuous phase measurement in the arm with the sample under study. The calculation of the temporal parameters of each element of the experimental setup was performed to determine the relaxation times of pyroelectric charges. An analysis of the contribution of pyroelectric phase drift, its magnitude, and the temporal characteristics of charge relaxation causing the drift was conducted. A model was proposed and the design of a phase modulator based on a lithium niobate crystal with additional back Z-oriented plates located on the modulator electrodes was investigated. The proposed solution method is capable of compensating for the pyroelectric field and, as a result, reducing parasitic phase shift.

Keywords: lithium niobate, phase modulator, pyroelectric effect, pyroelectric field

Acknowledgements. The research was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project No. FSER-2024-0006).

References
  1. Ilyichev I.V. Toguzov N.V. Shamray A.V. Optimal configuration of integrated optical thin film polarizer on lithium niobate substrate. St. Petersburg Polytechnic University Journal: Physics and Mathematics, 2009, no. 3(83), pp. 103–107. (in Russian)
  2. Minakata M., Saito S., Shibata M. Two-dimensional distribution of refractive-index changes in Ti-diffused LiNbO3 strip waveguides. Journal of Applied Physics, 1979, vol. 50, no. 5, pp. 3063–3067. https://doi.org/10.1063/1.326383
  3. Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications. Applied Physics Reviews, 2015, vol. 2, no. 4, pp. 040603. https://doi.org/10.1063/1.4931601
  4. Korkishko Y.N., Fedorov V.A., Feoktistova O.Y. LiNbO3 optical waveguide fabrication by high-temperature proton exchange. Journal of Lightwave Technology, 2000, vol. 18, no. 4, pp. 562–568. https://doi.org/10.1109/50.838131
  5. Becker R.A. Comparison of guided wave interferometric modulators fabricated on LiNbO3 via Ti indiffusion and proton exchange. Applied Physics Letters, 1983, vol. 43, no. 2, pp. 131–133. https://doi.org/10.1063/1.94280
  6. Courjal N., Bernal M.-P., Caspar A., Ulliac G., Bassignot F., Gauthier-Manuel L., Suarez M. Lithium niobate optical waveguides and microwaveguides. Emerging Waveguide Technology. InTech, 2018. https://doi.org/10.5772/intechopen.76798
  7. Lefevre H.C. The Fiber-Optic Gyroscope. Third Ed. Boston, Artech House, 2022, 500 p.
  8. Kuzminov Iu.S. Electro-Optical and Non-Linear Optical Lithium Niobate Crystal. Moscow, Nauka Publ., 1987, 263 p. (in Russian)
  9. Zhang M., Wang C., Kharel P., Zhu D., Lončar M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 2021, vol. 8, no. 5, pp. 652–667. https://doi.org/10.1364/optica.415762
  10. Chen G., Li N., Ng J.D., Lin H.-L., Zhou Y., Fu Y.H., Lee L.Y.T., Yu Y., Liu A.-Q., Danner A.J. Advances in lithium niobate photonics: development status and perspectives. Advanced Photonics, 2022, vol. 4, no. 3, pp. 034003. https://doi.org/10.1117/1.ap.4.3.034003
  11. Deppe O., Dorner G., König S., Martin T., Voigt S., Zimmermann S. MEMS and FOG technologies for tactical and navigation grade inertial sensors—recent improvements and comparison. Sensors, 2017, vol. 17, no. 3, pp. 567. https://doi.org/10.3390/s17030567
  12. Petrov A.N., Velichko E.N., Shamrai A.V., Tronev A.V., Lebedev V.V., Il’ichev I.V. An increase in the transmission efficiency of an rf fiber-optic line using the working point of an external modulator. Technical Physics, 2015, vol. 60, no. 5, pp. 761–766. https://doi.org/10.1134/S1063784215050217
  13. Wooten E.L., Kissa K.M., Yi-Yan A., Murphy E.J., Lafaw D.A., Hallemeier P.F., Maack D., Attanasio D.V., Fritz D.J., McBrien G.J., Bossi D.E. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000, vol. 6, no. 1, pp. 69–82. https://doi.org/10.1109/2944.826874
  14. Yamada S., Minakata M. DC drift phenomena in LiNbO3 optical waveguide devices. Japanese Journal of Applied Physics, 1981, vol. 20, no. 4, pp. 733. https://doi.org/10.1143/jjap.20.733
  15. Kostritskii S.M., Korkishko Yu.N., Fedorov V.A., Yatsenko A.V. Pyroelectric drift of integrated-optical LiNbO3 modulators. Ferroelectrics, 2021, vol. 574, no. 1, pp. 170–178. https://doi.org/10.1080/00150193.2021.1888062
  16. Hollinger W.P., Kovacs R.A. Tuned integrated optic modulator on a fiber optic gyroscope. Patent US5504580A, 1996.
  17. Salvestrini J.P., Guilbert L., Fontana M., Abarkan M., Gille S. Analysis and control of the DC drift in LiNbO3-based mach–zehnder modulators. Journal of Lightwave Technology, 2011, vol. 29, no. 10, pp. 1522–1534. https://doi.org/10.1109/jlt.2011.2136322
  18. Popescu S.T., Petris A., Vlad V.I. Interferometric measurement of the pyroelectric coefficient in lithium niobate. Journal of Applied Physics, 2013, vol. 113, no. 4, pp. 043101. https://doi.org/10.1063/1.4788696
  19. Parravicini J., Safioui J., Degiorgio V., Minzioni P., Chauvet M. All-optical technique to measure the pyroelectric coefficient in electro-optic crystals. Journal of Applied Physics, 2011, vol. 109, no. 3, pp. 033106. https://doi.org/10.1063/1.3544069
  20. Yevdokimov S.V., Shostak R.I., Yatsenko A.V. Anomalies in the pyroelectric properties of LiNbO3 crystals of the congruent composition. Physics of the Solid State, 2007, vol. 49, no. 10, pp. 1957–1962. https://doi.org/10.1134/S1063783407100241
  21. Bulmer C.H., Burns W.K., Hiser S.C. Pyroelectric effects in LiNbO3 channel waveguide devices. Applied Physics Letters, 1986, vol. 48, no. 16, pp. 1036–1038. https://doi.org/10.1063/1.96640
  22. Nagata H. Activation energy of DC-drift of x-cut LiNbO3 optical intensity modulators. IEEE Photonics Technology Letters, 2000, vol. 12, no. 4, pp. 386–388. https://doi.org/10.1109/68.839027
  23. Skeath P., Bulmer C.H., Hiser S.C., Burns W.K. Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers. Applied Physics Letters, 1986, vol. 49, no. 19, pp. 1221–1223. https://doi.org/10.1063/1.97419
  24. Seino M., Nakazawa T., Kubota Y., Doi M., Yamane T., Hakogi H. A low DC-drift Ti:LiNbO3 modulator assured over 15 years. Proc. of the Optical Fiber Communication Conference, 1992, pp. 325–328. https://doi.org/10.1364/ofc.1992.pd3
  25. Yatsenko A.V., Pritulenko A.S., Evdokimov S.V., Palatnikov M.N., Sidorov N.V. Specific features of electrical conductivity of LiTaO3 AND LiNbO3 crystals in the temperature range of 290–450 K. Physics of the Solid State, 2015, vol. 57, no. 8, pp. 1547–1550. https://doi.org/10.1134/S1063783415050339
  26. Rosenman G., Shur D., Krasik Ya.E., Dunaevsky A. Electron emission from ferroelectrics. Journal of Applied Physics, 2000, vol. 88, no. 1, pp. 6109–6161. https://doi.org/10.1063/1.1319378
  27. Smirnova A.V., Varzhel S.V., Strigalev V.E. Methods of suppressing the pyroelectric effect to stabilize the optical parameters in a phase modulator. Proc. of the 24th Conference of Young Scientists "Navigation and Motion Control" ((with international participants), 2022, pp. 85–87. (in Russian)
  28. Shulepova A.V., Aksarin S.M., Strigalev V.E. Study of phase shift under the influence of a pyroelectric field in a Ti:LiNbO3 modulator. Almanac of scientific works of young scientists of ITMO University. Vol. 4. St. Petersburg, 2021, pp. 102–106. (in Russian)
  29. Sosunov A., Ponomarev R., Zhuravlev A., Mushinsky S., Kuneva M. Reduction in DC-drift in LiNbO3-based electro-optical modulator. Photonics, 2021, vol. 8, no. 12, pp. 571. https://doi.org/10.3390/photonics8120571
  30. Yatsenko A.V., Pritulenko A.S., Yagupov S.V., Sugak D.Y., Sol’skii I.M. Investigation of the stability of electrical properties of reduced linbo3 crystals. Technical Physics, 2017, vol. 62, no. 7, pp. 1065–1068. https://doi.org/10.1134/S1063784217070271
  31. Fridkin V.M. Photoferroelectrics. Springer, Springer, 1979, 176 p. https://doi.org/10.1007/978-3-642-81351-1
  32. Besekerskii V.A., Popov E.P. Theory of Automatic Control Systems. Moscow, Nauka, 1972, 768 p. (in Russian)
  33. Shcherbakov V.S., Lazuta I.V. The theory of automatic control. linear continuous systems. Omsk, SibADI, 2013, 142 p. (in Russian)
  34. Thiele F., Hummel T., Amelie Lange N., Dreher F., Protte M., Bruch F., Lengeling S., Herrmann H., Eigner C., Silberhorn C. Pyroelectric influence on lithium niobate during the thermal transition for cryogenic integrated photonics. Materials for Quantum Technology, 2024, vol. 4, no. 1, pp. 015402. https://doi.org/10.1088/2633-4356/ad207d


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика