Menu
Publications
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief

Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2024-24-4-538-547
Study of pyroelectric effect and creation of modified design of phase modulator based on lithium niobate
Read the full article

Article in Russian
For citation:
Abstract
For citation:
Shulepova A.V., Shulepov V.A., Strigalev V.E. Study of pyroelectric effect and creation of modified design of phase modulator based on lithium niobate. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 4, pp. 538–547 (in Russian). doi: 10.17586/2226-1494-2024-24-4-538-547
Abstract
The study explores the phenomenon of the pyroelectric effect and demonstrates its influence on the emergence of an additional phase shift of the passing light wave in waveguide structures of photonic integrated circuits formed on a lithium niobate crystal X-cut substrate. Measurements were carried out using interferometric methods in a Mach-Zehnder fiber-optic interferometer configuration with radiation modulation in the reference arm allowing for continuous phase measurement in the arm with the sample under study. The calculation of the temporal parameters of each element of the experimental setup was performed to determine the relaxation times of pyroelectric charges. An analysis of the contribution of pyroelectric phase drift, its magnitude, and the temporal characteristics of charge relaxation causing the drift was conducted. A model was proposed and the design of a phase modulator based on a lithium niobate crystal with additional back Z-oriented plates located on the modulator electrodes was investigated. The proposed solution method is capable of compensating for the pyroelectric field and, as a result, reducing parasitic phase shift.
Keywords: lithium niobate, phase modulator, pyroelectric effect, pyroelectric field
Acknowledgements. The research was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project No. FSER-2024-0006).
References
Acknowledgements. The research was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project No. FSER-2024-0006).
References
- Ilyichev I.V. Toguzov N.V. Shamray A.V. Optimal configuration of integrated optical thin film polarizer on lithium niobate substrate. St. Petersburg Polytechnic University Journal: Physics and Mathematics, 2009, no. 3(83), pp. 103–107. (in Russian)
- Minakata M., Saito S., Shibata M. Two-dimensional distribution of refractive-index changes in Ti-diffused LiNbO3 strip waveguides. Journal of Applied Physics, 1979, vol. 50, no. 5, pp. 3063–3067. https://doi.org/10.1063/1.326383
- Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications. Applied Physics Reviews, 2015, vol. 2, no. 4, pp. 040603. https://doi.org/10.1063/1.4931601
- Korkishko Y.N., Fedorov V.A., Feoktistova O.Y. LiNbO3 optical waveguide fabrication by high-temperature proton exchange. Journal of Lightwave Technology, 2000, vol. 18, no. 4, pp. 562–568. https://doi.org/10.1109/50.838131
- Becker R.A. Comparison of guided wave interferometric modulators fabricated on LiNbO3 via Ti indiffusion and proton exchange. Applied Physics Letters, 1983, vol. 43, no. 2, pp. 131–133. https://doi.org/10.1063/1.94280
- Courjal N., Bernal M.-P., Caspar A., Ulliac G., Bassignot F., Gauthier-Manuel L., Suarez M. Lithium niobate optical waveguides and microwaveguides. Emerging Waveguide Technology. InTech, 2018. https://doi.org/10.5772/intechopen.76798
- Lefevre H.C. The Fiber-Optic Gyroscope. Third Ed. Boston, Artech House, 2022, 500 p.
- Kuzminov Iu.S. Electro-Optical and Non-Linear Optical Lithium Niobate Crystal. Moscow, Nauka Publ., 1987, 263 p. (in Russian)
- Zhang M., Wang C., Kharel P., Zhu D., Lončar M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 2021, vol. 8, no. 5, pp. 652–667. https://doi.org/10.1364/optica.415762
- Chen G., Li N., Ng J.D., Lin H.-L., Zhou Y., Fu Y.H., Lee L.Y.T., Yu Y., Liu A.-Q., Danner A.J. Advances in lithium niobate photonics: development status and perspectives. Advanced Photonics, 2022, vol. 4, no. 3, pp. 034003. https://doi.org/10.1117/1.ap.4.3.034003
- Deppe O., Dorner G., König S., Martin T., Voigt S., Zimmermann S. MEMS and FOG technologies for tactical and navigation grade inertial sensors—recent improvements and comparison. Sensors, 2017, vol. 17, no. 3, pp. 567. https://doi.org/10.3390/s17030567
- Petrov A.N., Velichko E.N., Shamrai A.V., Tronev A.V., Lebedev V.V., Il’ichev I.V. An increase in the transmission efficiency of an rf fiber-optic line using the working point of an external modulator. Technical Physics, 2015, vol. 60, no. 5, pp. 761–766. https://doi.org/10.1134/S1063784215050217
- Wooten E.L., Kissa K.M., Yi-Yan A., Murphy E.J., Lafaw D.A., Hallemeier P.F., Maack D., Attanasio D.V., Fritz D.J., McBrien G.J., Bossi D.E. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000, vol. 6, no. 1, pp. 69–82. https://doi.org/10.1109/2944.826874
- Yamada S., Minakata M. DC drift phenomena in LiNbO3 optical waveguide devices. Japanese Journal of Applied Physics, 1981, vol. 20, no. 4, pp. 733. https://doi.org/10.1143/jjap.20.733
- Kostritskii S.M., Korkishko Yu.N., Fedorov V.A., Yatsenko A.V. Pyroelectric drift of integrated-optical LiNbO3 modulators. Ferroelectrics, 2021, vol. 574, no. 1, pp. 170–178. https://doi.org/10.1080/00150193.2021.1888062
- Hollinger W.P., Kovacs R.A. Tuned integrated optic modulator on a fiber optic gyroscope. Patent US5504580A, 1996.
- Salvestrini J.P., Guilbert L., Fontana M., Abarkan M., Gille S. Analysis and control of the DC drift in LiNbO3-based mach–zehnder modulators. Journal of Lightwave Technology, 2011, vol. 29, no. 10, pp. 1522–1534. https://doi.org/10.1109/jlt.2011.2136322
- Popescu S.T., Petris A., Vlad V.I. Interferometric measurement of the pyroelectric coefficient in lithium niobate. Journal of Applied Physics, 2013, vol. 113, no. 4, pp. 043101. https://doi.org/10.1063/1.4788696
- Parravicini J., Safioui J., Degiorgio V., Minzioni P., Chauvet M. All-optical technique to measure the pyroelectric coefficient in electro-optic crystals. Journal of Applied Physics, 2011, vol. 109, no. 3, pp. 033106. https://doi.org/10.1063/1.3544069
- Yevdokimov S.V., Shostak R.I., Yatsenko A.V. Anomalies in the pyroelectric properties of LiNbO3 crystals of the congruent composition. Physics of the Solid State, 2007, vol. 49, no. 10, pp. 1957–1962. https://doi.org/10.1134/S1063783407100241
- Bulmer C.H., Burns W.K., Hiser S.C. Pyroelectric effects in LiNbO3 channel waveguide devices. Applied Physics Letters, 1986, vol. 48, no. 16, pp. 1036–1038. https://doi.org/10.1063/1.96640
- Nagata H. Activation energy of DC-drift of x-cut LiNbO3 optical intensity modulators. IEEE Photonics Technology Letters, 2000, vol. 12, no. 4, pp. 386–388. https://doi.org/10.1109/68.839027
- Skeath P., Bulmer C.H., Hiser S.C., Burns W.K. Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers. Applied Physics Letters, 1986, vol. 49, no. 19, pp. 1221–1223. https://doi.org/10.1063/1.97419
- Seino M., Nakazawa T., Kubota Y., Doi M., Yamane T., Hakogi H. A low DC-drift Ti:LiNbO3 modulator assured over 15 years. Proc. of the Optical Fiber Communication Conference, 1992, pp. 325–328. https://doi.org/10.1364/ofc.1992.pd3
- Yatsenko A.V., Pritulenko A.S., Evdokimov S.V., Palatnikov M.N., Sidorov N.V. Specific features of electrical conductivity of LiTaO3 AND LiNbO3 crystals in the temperature range of 290–450 K. Physics of the Solid State, 2015, vol. 57, no. 8, pp. 1547–1550. https://doi.org/10.1134/S1063783415050339
- Rosenman G., Shur D., Krasik Ya.E., Dunaevsky A. Electron emission from ferroelectrics. Journal of Applied Physics, 2000, vol. 88, no. 1, pp. 6109–6161. https://doi.org/10.1063/1.1319378
- Smirnova A.V., Varzhel S.V., Strigalev V.E. Methods of suppressing the pyroelectric effect to stabilize the optical parameters in a phase modulator. Proc. of the 24th Conference of Young Scientists "Navigation and Motion Control" ((with international participants), 2022, pp. 85–87. (in Russian)
- Shulepova A.V., Aksarin S.M., Strigalev V.E. Study of phase shift under the influence of a pyroelectric field in a Ti:LiNbO3 modulator. Almanac of scientific works of young scientists of ITMO University. Vol. 4. St. Petersburg, 2021, pp. 102–106. (in Russian)
- Sosunov A., Ponomarev R., Zhuravlev A., Mushinsky S., Kuneva M. Reduction in DC-drift in LiNbO3-based electro-optical modulator. Photonics, 2021, vol. 8, no. 12, pp. 571. https://doi.org/10.3390/photonics8120571
- Yatsenko A.V., Pritulenko A.S., Yagupov S.V., Sugak D.Y., Sol’skii I.M. Investigation of the stability of electrical properties of reduced linbo3 crystals. Technical Physics, 2017, vol. 62, no. 7, pp. 1065–1068. https://doi.org/10.1134/S1063784217070271
- Fridkin V.M. Photoferroelectrics. Springer, Springer, 1979, 176 p. https://doi.org/10.1007/978-3-642-81351-1
- Besekerskii V.A., Popov E.P. Theory of Automatic Control Systems. Moscow, Nauka, 1972, 768 p. (in Russian)
- Shcherbakov V.S., Lazuta I.V. The theory of automatic control. linear continuous systems. Omsk, SibADI, 2013, 142 p. (in Russian)
- Thiele F., Hummel T., Amelie Lange N., Dreher F., Protte M., Bruch F., Lengeling S., Herrmann H., Eigner C., Silberhorn C. Pyroelectric influence on lithium niobate during the thermal transition for cryogenic integrated photonics. Materials for Quantum Technology, 2024, vol. 4, no. 1, pp. 015402. https://doi.org/10.1088/2633-4356/ad207d