doi: 10.17586/2226-1494-2024-24-6-923-935


Modern optical methods of non-contact geometric measurements and reconstruction of object 3D surface shape: a review 

N. A. Chertov, D. D. Khokhlov


Read the full article  ';
Article in Russian

For citation:
Chertov A.N., Khokhlov D.D. Modern optical methods of non-contact geometric measurements and reconstruction of object 3D surface shape: a review. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 6, pp. 923-935 (in Russian). doi: 10.17586/2226-1494-2024-24-6-923-935


Abstract
The article is devoted to the study and systematic generalization of the existing experience in the field of determination and control of geometric parameters of various objects using optical methods. When searching for literary sources on the work subject, open international bibliographic databases and search engines were used. Scientific articles devoted to the description of hardware and software for contactless geometric measurements and/or restoration of the threedimensional surface shape of material objects constructed on the basis of optical methods as well as examples of their application to solve practical problems were selected for consideration. The selection criterion for the works under consideration corresponded to the set of keywords and publication in highly rated domestic and foreign publications no older than 2010. A systematic classification of optical methods and hardware and software for contactless geometric measurements and restoration of the three-dimensional surface shape of objects described in peer-reviewed scientific publications is proposed, a comparative qualitative assessment is performed. The most effective methods for solving individual practical problems are identified. The main limitations of the considered methods and means are indicated. The main trends in the development of the considered methods associated with miniaturization and development of electronic component manufacturing technologies, increased sensitivity, spatial and temporal resolution of detecting elements, expanded range and functionality of radiation sources, and the development of automated data processing capabilities are highlighted. The article is a systematic review that can be used to select an optical method that is optimal for solving practical problems in such areas as non-destructive testing and minimally invasive diagnostics, navigation of robotic systems, and creation of digital copies of material objects. In addition, the presented article can be useful for students of specialized specialties of technical educational institutions to familiarize themselves with the current crosssection of modern methodological and hardware-software tools.

Keywords: non-contact measurement, geometric parameters, 3D shape recovery, computer vision, structured illumination, laser scanning, computed tomography, fiber-optic imaging system, interference method

Acknowledgements. This study is supported by the Ministry of Science and Higher Education of the Russian Federation (project FFNS2024-0002).

References
  1. Lu F., Wu C., Yang J. High-speed 3D shape measurement using Fourier transform and stereo vision. Journal of the European Optical Society-Rapid Publications, 2018, vol. 14, no. 1, pp. 22. https://doi.org/10.1186/s41476-018-0090-z
  2. Korotaev V.V., Pantiushin A.V., Serikova M.G., Anisimov A.G. Deflection measuring system for floating dry docks. Ocean Engineering, 2016, vol. 117, pp. 39–44. https://doi.org/10.1016/j.oceaneng.2016.03.012
  3. Mishchenko N.I. Three-dimensional active-pulse systems of observation and object parameter measurements. Proceedings of TUSUR University, 2017,vol. 20,no. 3,pp. 119–123. (in Russian). https://doi.org/10.21293/1818-0442-2017-20-3-119-123
  4. Wu Z., Guo W., Chen Z., Wang H., Li X., Zhang Q.Three-dimensional shape and deformation measurement on complex structure parts. Scientific Reports, 2022, vol. 12, pp. 7760. https://doi.org/10.1038/s41598-022-11702-x
  5. Pan B., Yu L.,Zhang Q. Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement. Science China Technological Sciences, 2018, vol. 61, no. 1, pp. 2–20. https://doi.org/10.1007/s11431-017-9090-x
  6. Ferková Z., Urbanová P., Černý D., Žuži M., Matula P.Age and gender-based human face reconstruction from single frontal image. Multimedia Tools and Applications, 2020, vol. 79, no. 5-6, pp. 3217–3242. https://doi.org/10.1007/s11042-018-6869-5
  7. Murynin A.B., Rikhter A.A. Features of using methods and algorithms for reconstructing the three-dimensional shape of rigid objects based on panoramic photography data. Mashinnoe obuchenie i analiz dannyh, 2018, vol. 4, no. 4, pp. 235–247. https://doi.org/10.21469/22233792.4.4.02
  8. Cui Y., Schuon S., Thrun S., Stricker D., Theobalt C. Algorithms for 3D shape scanning with a depth camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, vol. 35, no. 5, pp. 1039–1050. https://doi.org/10.1109/TPAMI.2012.190
  9. Onishchenko S.V., Kozlovsky A.V., Melnik E.V. Development of a contactless system for measuring geometric parameters of objects in the image. Izvestiya Tula State University. Technical sciences, 2022, no. 9, pp. 177–182. (in Russian). https://doi.org/10.24412/2071-6168-2022-9-177-182
  10. Yu L., Tao R., Lubineau G. Accurate 3D shape, displacement and deformation measurement using a smartphone. Sensors, 2019, vol. 19, no. 3, pp. 719. https://doi.org/10.3390/s19030719
  11. Foysal K.H., Chang H.-J., Bruess F., Chong J.-W. Body size measurement using a smartphone. Electronics, 2021, vol. 10, no. 11, pp. 1338. https://doi.org/10.3390/electronics10111338
  12. Wang R., Law A.C., Garcia D., Yang S., Kong Z. Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance. International Journal of Advanced Manufacturing Technology, 2021, vol. 117, no. 3-4, pp. 845–862. https://doi.org/10.1007/s00170-021-07780-2
  13. Zhang S. High-speed 3D shape measurement with structured light methods: A review. Optics and Lasers in Engineering, 2018, vol. 106, pp. 119–131. https://doi.org/10.1016/j.optlaseng.2018.02.017
  14. Dvoinishnikov S.V., Anikin Yu.A., Kabardin I.K., Kulikov D.V., Meledin V.G. An optoelectronic method of contactless measurement of the profile of the surface of large complexly shaped objects. Measurement Techniques,2016, vol. 59, no. 1, pp. 21–27. https://doi.org/10.1007/s11018-016-0910-8
  15. Kim G., Kim Y., Yun J., Moon S.-W., Kim S., Kim J., Park J., Badloe T., Kim I., Rho J. Metasurface-driven full-space structured light for three-dimensional imaging. Nature Communications, 2022, vol. 13, pp. 5920. https://doi.org/10.1038/s41467-022-32117-2
  16. Chen B., Shi P., Wang Y., Xu Y., Ma H., Wang R., Zheng C., Chu P. Determining surface shape of translucent objects with the combination of laser-beam-based structured light and polarization technique. Sensors, 2021, vol. 21, no. 19, pp. 6587. https://doi.org/10.3390/s21196587
  17. Yin W., Feng S., Tao T., Huang L., Trusiak M., Chen Q., Zuo C. High-speed 3D shape measurement using the optimized composite fringe patterns and stereo-assisted structured light system. Optics Express,2019, vol. 27, no. 3, pp. 2411–2431. https://doi.org/10.1364/OE.27.002411
  18. Niu Y., Liu L., Huang F., Huang S., Chen S. Overview of image-based 3D reconstruction technology. Journal of the European Optical Society-Rapid Publications, 2024, vol. 20, no. 1, pp. 18. https://doi.org/10.1051/jeos/2024018
  19. Tang W., Jia F., Wang X. An improved adaptive triangular mesh-based image warping method. Frontiers in Neurorobotics, 2023, vol. 16, pp. 1042429. https://doi.org/10.3389/fnbot.2022.1042429
  20. Klyachin A.A., Klyachin V.A. Algorithm for restoring the surface of an object from its image. Mathematical Physics and Computer Simulation, 2021, vol. 24, no. 1, pp. 16–24. (in Russian). https://doi.org/10.15688/mpcm.jvolsu.2021.1.2
  21. Shakhramanyan M., Kazaryan M., Richter A.3D modeling of indirect image based rigid objects by applying the coordinategrid method. Information and Space, 2018, no. 3, pp. 104–110. (in Russian)
  22. Zhang H.M., Dong B. A review on deep learning in medical image reconstruction. Journal of the Operations Research Society of China, 2020, vol. 8, no. 2, pp. 311–340. https://doi.org/10.1007/s40305-019-00287-4
  23. Levashev S.P. Recognition of 3D objects based on spectral invariants using deep machine learning. Izvestiya SFedU. Engineering Sciences, 2019,no. 3(205), pp. 20–31.(in Russian). https://doi.org/10.23683/2311-3103-2019-3-20-31
  24. Horaud R., Hansard M., Evangelidis G., Ménier C. An overview of depth cameras and range scanners based on time-of-flight technologies. Machine Vision and Applications, 2016, vol. 27, no. 7, pp. 1005–1020. https://doi.org/10.1007/s00138-016-0784-4
  25. Pavelyeva E.A. Image processing and analysis based on the use of phase information. Computer Optics, 2018, vol. 42, no. 6, pp. 1022–1034. (in Russian). https://doi.org/10.18287/2412-6179-2018-42-6-1022-1034
  26. Shiba Y., Ono S., Furukawa R., Hiura S., Kawasaki H. Learning-based active 3D measurement technique using light field created by video projectors. IPSJ Transactions on Computer Vision and Applications, 2019, vol. 11, no. 1, pp. 6. https://doi.org/10.1186/s41074-019-0058-y
  27. Li X., Liu Z., Cai Y., Pan C., Song J., Wang J.,Shao X. Polarization 3D imaging technology: a review. Frontiers in Physics, 2023, vol. 11, pp. 1198457. https://doi.org/10.3389/fphy.2023.1198457
  28. Ramella-Roman J.C., Saytashev I., Piccini M. A review of polarization-based imaging technologies for clinical and preclinical applications. Journal of Optics, 2020, vol. 22, no. 12, pp. 123001. https://doi.org/10.1088/2040-8986/abbf8a
  29. Wu D., Liang Z., Chen G. Deep learning for LiDAR-only and LiDAR-fusion 3D perception: a survey. Intelligence and Robotics, 2022, vol. 2, pp. 105–129. https://doi.org/10.20517/ir.2021.20
  30. Li H.T., Todd Z., Bielski N., Carroll F. 3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation. Visual Computer, 2022, vol. 38, no. 5, pp. 1759–1774. https://doi.org/10.1007/s00371-021-02103-8
  31. DiStefano F., Chiappini S., Gorreja A., Balestra M., Pierdicca R. Mobile 3D scan LiDAR: a literature review. Geomatics, Natural Hazards and Risk, 2021, vol. 12, no. 1, pp. 2387–2429. https://doi.org/10.1080/19475705.2021.1964617
  32. Asvadi A., Premebida C., Peixoto P., Nunes U. 3D Lidar-based static and moving obstacle detection in driving environments: An approach based on voxels and multi-region ground planes. Robotics and Autonomous Systems. 2016, vol. 83, pp. 299–311. https://doi.org/10.1016/J.ROBOT.2016.06.007
  33. Nguyen T.A., Nguyen P.T., Do S.T. Application of BIM and 3D P.T. laser scanning for quantity management in construction projects. Advances in Civil Engineering, 2020, vol. 2020. https://doi.org/10.1155/2020/8839923
  34. Bogdanov A.N., Aleshutin I.A. Land laser scanning in construction and BIM-technologies. News of the Kazan State University of Architecture and Engineering, 2018,no. 4(46), pp. 326–332. (in Russian)
  35. Rada A.O., Kuznetsov A.D., Nepomnishchev I.L., Konkov N.Yu. Improving measurements of volumetric objects in the coal industry using laser scanning data. Ucol', 2023, no. 12, pp. 37–43. (in Russian). https://doi.org/10.18796/0041-5790-2023-12-37-43
  36. Daineko O.V., Kalinovskaya L.F., Bessonov N.V. Particularities of metrological control of non-contact systems for measuring the geometric dimensions of metal products. Foundry production and metallurgy, 2021,no. 1, pp. 91–94. (in Russian). https://doi.org/10.21122/1683-6065-2021-1-91-94
  37. Girya L.V., Trofimov G.P. Laser 3D scanning of architectural monuments. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture, 2022, vol. 24, no. 6, pp. 35−43. (in Russian). https://doi.org/10.31675/1607-1859-2022-24-6-35-43
  38. Casula G., Cuccuru F., Bianchi M.G., Fais S., Ligas P. High resolution 3-D modelling of cylinder shape bodies applied to ancient columns of a church. Advances in Geosciences, 2020, vol. 54, pp. 119–127. https://doi.org/10.5194/adgeo-54-119-2020
  39. Toneva D., Nikolova S., Georgiev I., Lazarov N. Impact of resolution and texture of laser scanning generated three-dimensional models on landmark identification. Anatomical Record, 2020, vol. 303, no. 7, pp. 1950–1965. https://doi.org/10.1002/ar.24272
  40. Bhatti A.Q., Wahab A., Sindi W. An overview of 3D laser scanning techniques and application on digitization of historical structures. Innovative Infrastructure Solutions, 2021, vol. 6, no. 4, pp. 186. https://doi.org/10.1007/s41062-021-00550-9
  41. Haleem A., Javaid M. 3D scanning applications in medical field: aliterature-based review. Clinical Epidemiology and Global Health, 2019, vol. 7, no. 2, pp. 199–210. https://doi.org/10.1016/j.cegh.2018.05.006
  42. Javaid M.,Haleem A., Kumar L. Current status and applications of 3D scanning in dentistry. Clinical Epidemiology and Global Health, 2019, vol. 7, no. 2, pp. 228–233. https://doi.org/10.1016/j.cegh.2018.07.005
  43. Altyntsev M.A., Chernov A.V. Application of laser scanning technology for modelling real estate objects in 3Dc adastre. Geodesy and Cartography, 2018,vol. 79, no. 9, pp. 52–63. (in Russian). https://doi.org/10.22389/0016-7126-2018-939-9-52-63
  44. Hu C., Kong L., Lv F. Application of 3D laser scanning technology in engineering field. E3Webo fConferences, 2021, vol. 233, pp. 04014. https://doi.org/10.1051/e3sconf/202123304014
  45. Kim H., Yeo C., Cha M., Mun D.A method of generating depth images for view-based shape retrieval of 3D CAD models from partial point clouds. Multimedia Tools and Applications, 2021, vol. 80, no. 7, pp. 10859–10880. https://doi.org/10.1007/s11042-020-10283-z
  46. Rudenko A.V., Rudenko M.A., Kashirina I.L. Algorithms for 3D reconstruction and calculation of object parameters based on the results of detection in medical images. Modeling, optimization and information technology, 2024, vol. 12, no. 2(45). (in Russian). https://doi.org/10.26102/2310-6018/2024.45.2.013
  47. Limanova N.I., Ataev S.G. Computer aided tomography picture analysis on the base of stage-by-stage binarization and its software implementation. Information and Control Systems, 2018, no. 3, pp. 98–106. (in Russian). https://doi.org/10.15217/issn1684-8853.2018.3.98
  48. Kerstens A., Corthout N., Pavie B., Huang Z., Vernaillen F., Vande Velde G., Munck S. A Label-free multicolor optical surface tomography (ALMOST) imaging method for nontransparent 3D samples. BMC Biology, 2019, vol. 17, no. 1, pp. 1. https://doi.org/10.1186/s12915-018-0614-4
  49. Du Z., Hu Y., Ali Buttar N., Mahmood A. X-ray computed tomography for quality inspection of agricultural products: A review. Food Science and Nutrition, 2019, vol. 7, no. 10, pp. 3146–3160. https://doi.org/10.1002/fsn3.1179
  50. Zhang X., Cheng L., Liu Y., Tao B., Wang J., Liao R. A review of non-destructive methods for the detection tiny defects with in organic in sulating materials. Frontiers in Materials, 2022, vol. 9, pp. 995516. https://doi.org/10.3389/fmats.2022.995516
  51. SzaboI, Sun J., Feng G., Kanfoud J., Gan T.H., Selcuk C. Automated defect recognition as a critical element of a three dimensional X-ray computed tomography imaging-based smart non-destructive testing technique in additive manufacturing of near net-shape parts. Applied Sciences, 2017, vol. 7, no. 11, pp. 1156. https://doi.org/10.3390/app7111156
  52. Kastner J., Heinzl C. X-ray computed tomography for non-destructive testing and materials characterization. Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Springer, 2015, pp. 227–250. https://doi.org/10.1007/978-1-4471-6741-9_8
  53. Veikutis V., Budrys T., Basevicius A., Lukosevicius S., Gleizniene R., Unikas R., Skaudickas D. Artifacts in computer tomography imaging: how it can really affect diagnostic image quality and confuse clinical diagnosis?. Journal of Vibroengineering, 2015, vol. 17, no. 2, pp. 995–1003.
  54. Bauer F., Forndran D., Schromm T., Grosse C.U. Practical part-specific trajectory optimization for robot-guided inspection via computed tomography. Journal of Nondestructive Evaluation, 2022, vol. 41, no. 3, pp. 55. https://doi.org/10.1007/s10921-022-00888-9
  55. He B., Zhang Y., Zhao L., Sun Z., Hu X., Kang Y., Wang L., Li Z., Huang W., Li Z., Xing G., Hua F., Wang C., Xue P., Zhang N.Robotic-OCT guided inspection and microsurgery of monolithic storage devices. Nature Communication, 2023, vol.14, pp. 5701. https://doi.org/10.1038/s41467-023-41498-x
  56. Smakic A., Rathmann N., Kostrzewa M., Schönberg S.O., Weiß C., Diehl S.J. Performance of a robotic assistance device in computed tomography-guided percutaneous diagnostic and therapeutic procedures. Cardio Vascular and Interventional Radiology, 2018, vol. 41, no. 4, pp. 639–644. https://doi.org/10.1007/s00270-017-1841-8
  57. Egorova D.A., Kulikov A.V., Mukhtubaev A.B., Plotnikov M.Yu. Fiber optic measurement system for determination of extended object position and bends in 3D space. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 3, pp. 346–352. (in Russian). https://doi.org/10.17586/2226-1494-2020-20-3-346-352
  58. Butov O.V., Bazakutca A.P., Chamorovskii Iu.K., Fedorov A.N., Shevtcov I.A. All-fiber high-sensitivity bend sensor for nuclear industry. Foton-Expres, 2019,no. 6, pp. 26–27. https://doi.org/10.24411/2308-6920-2019-16008
  59. Islamov R.R., Aginey R.V., Isupova E.V. Analysis of ways and methods of monitoring the stressed state of underground oil and gas pipelines, working in complicated engineering-geological conditions. Transport and Storage of Oil Products and Hydrocarbons, 2017, no. 6, pp. 31–40. (in Russian)
  60. Kachura S.M., Postnov V.I. Perspective optical fiber sensors and their application (review). Proceedings of VIAM, 2019, no. 5(77), pp. 52–61. (in Russian). https://doi.org/10.18577/2307-6046-2019-0-5-52-61
  61. Di H., Xin Y., Jian J. Review of optical fiber sensors for deformation measurement. Optik, 2018, vol. 168, pp. 703–713. https://doi.org/10.1016/j.ijleo.2018.04.131
  62. Fröch J.E., Huang L., Tanguy Q.A., Colburn S., Zhan A., Ravagli A., Seibel E.J., Böhringer K.F., Majumdar A. Realtime full-color imaging in a Meta-optical fiber endoscope. eLight, 2023, vol. 3, no. 1, pp. 13. https://doi.org/10.1186/s43593-023-00044-4
  63. Belinsky A.V., Gostev P.P., Magnitskiy S.A., Chirkin A.S. Ghost fiber optic 3D endoscopy. JETP Letters, 2023, vol. 117, no. 3, pp. 202–206. https://doi.org/10.1134/S0021364022602718
  64. Peng X., Kong L. Design of a real-time fiber-optic infrared imaging system with wide-angle and large depth of field. Chinese Optics Letters, 2022, vol. 20, no. 1, pp. 011201. https://doi.org/10.3788/COL202220.011201
  65. Amitonova L.V. Multimode fiber endoscopes for computational brain imaging. Neurophotonics, 2024, vol. 11, no. S1, pp. S11509. https://doi.org/10.1117/1.NPh.11.S1.S11509
  66. Stellinga D., Phillips D.B., Mekhail S.P., Selyem A., Turtaev S., Čižmár T., Padgett M.J. Time-of-flight 3D imaging through multimode optical fibers. Science, 2021, vol. 374, no. 6573, pp. 1395–1399. https://doi.org/10.1126/science.abl3771
  67. Caramazza P., Moran O., Murray-Smith R., Faccio D. Transmission of natural scene images through a multimode fibre. Nature Communications, 2019, vol. 10, pp. 2029. https://doi.org/10.1038/s41467-019-10057-8
  68. Rahmani B., Oguz I., Tegin U., Hsieh J., Psaltis D., Moser C. Learning to image and compute with multimode optical fibers. Nanophotonics, 2022, vol. 11, no. 6, pp. 1071–1082. https://doi.org/10.1515/nanoph-2021-0601
  69. Wang L., Qi T., Liu Z., Meng Y., Li D., Yan P., Gong M., Xiao Q. Complex pattern transmission through multimode fiber under diverse light sources. APL Photonics, 2022, vol. 7, no. 10, pp. 106104. https://doi.org/10.1063/5.0098370
  70. Xin L., Liu X., Yang Z., Zhang X., Gao Z., Liu Z. Three-dimensional reconstruction of super-resolved white-light interferograms based on deep learning. Optics and Lasers in Engineering, 2021, vol. 145, pp. 106663. https://doi.org/10.1016/j.optlaseng.2021.106663
  71. Osten W., Pedrini G. 55 years of holographic non-destructive testing and experimental stress analysis: is there still progress to be expected?. Light: Advanced Manufacturing, 2022, vol. 3, no. 1, pp. 121–136. https://doi.org/10.37188/lam.2022.008
  72. Petrov V., Pogoda A., Sementin V., Sevryugin A., Shalymov E., Venediktov D., Venediktov V. Advances in digital holographic interferometry. Journal of Imaging,2022, vol. 8, no. 7, pp. 196. https://doi.org/10.3390/jimaging8070196
  73. Javidi B., Carnicer A., Anand A., Barbastathis G., Chen W., Ferraro P., Goodman J.W., Horisaki R., Khare K., Kujawinska M., Leitgeb R.A., Marquet P., Nomura T., Ozcan A., Park Y., Pedrini G., Picart P., Rosen J., Saavedra G., Shaked N.T., Stern A., Tajahuerce E., Tian L., Wetzstein G., Yamaguchi M. Roadmap on digital holography. Optics Express, 2021, vol. 29, no. 22, pp. 35078–35118. https://doi.org/10.1364/OE.435915
  74. Behal J., Memmolo P., Miccio L., Bianco V., Ferraro P. On the optical performance of incoherent digital holography for extended 3D objects. Optics & Laser Technology, 2024, vol. 170, pp. 110286. https://doi.org/10.1016/j.optlastec.2023.110286
  75. TaharaT. Review of incoherent digital holography: applications to multidimensional incoherent digital holographic microscopy and palm-sized digital holographic recorder–holosensor. Frontiers in Photonics, 2022, vol. 2. https://doi.org/10.3389/fphot.2021.829139
  76. Zeppieri M., Marsili S., Enaholo E.S., Shuaibu A.O., Uwagboe N., Salati C., Spadea L., Musa M. Optical coherence tomography (OCT): A brief look at the uses and technological evolution of ophthalmology. Medicina, 2023, vol. 59, no. 12, pp. 2114. https://doi.org/10.3390/medicina59122114
  77. Zheng S., Bai Y., Xu Z., Liu P., Ni G. Optical coherence tomography for three-dimensional imaging in the biomedical field: A review. Frontiers in Physics, 2021, vol. 9. https://doi.org/10.3389/fphy.2021.744346
  78. Koponen A., Haavisto S. Analysis of industry-related flows by optical coherence tomography – a review. KONA Powder and Particle Journal, 2020, vol. 37, pp. 42–63. https://doi.org/10.14356/kona.2020003


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика