Menu
Publications
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief

Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2025-25-3-438-445
Investigation of the possibility of using evolutionary algorithms for conditional generation of attributed graphs
Read the full article

Article in Russian
For citation:
Abstract
For citation:
Deeva I.Yu., Andreeva P.O., Shikov E.N., Kalyuzhnaya A.V. Investigation of the possibility of using evolutionary algorithms for conditional generation of attributed graphs. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no. 3, pp. 438–445 (in Russian). doi: 10.17586/2226-1494-2025-25-3-438-445
Abstract
The field of synthetic generation of attributed graphs is actively developing due to advances in generative modeling. However, a key problem of current methods remains the limited diversity of synthesized graphs, due to the dependence on the characteristics of real data used to train generative models. This is a problem because topological properties of graphs and statistical characteristics of attributes critically affect the performance of graph-based machine learning models. In this paper, we test the hypothesis that a combination of evolutionary algorithms and Bayesian networks can provide flexible control over the generation of both graph topology and attributes. The proposed approach includes two key components: evolutionary algorithms to control topological characteristics of the graph (e.g. average vertex degree, clustering coefficient) and Bayesian networks to generate attributes with given statistical parameters such as assortativity or average correlation between attributes. The method allows explicitly setting constraints on graph properties, providing variability independent of the original data. Experiments confirmed that the approach can generate attributed graphs with a wide range of topological characteristics and given statistical parameters of the attributes with sufficiently low generation error. The results demonstrate the promising use of evolutionary and Bayesian methods for conditional graph generation. The main advantage of the approach is the ability to decompose the problem into independent control of topology and attributes, which opens new possibilities for testing machine learning algorithms under controlled conditions. A limitation is the computational complexity of evolutionary optimization, which requires further work to optimize the algorithm. In the future, the method can be extended to generate dynamic graphs and integrate with deep generative models.
Keywords: attributed graphs, synthetic graph generation, evolutionary optimization, Bayesian networks, topological characteristics of graphs, statistical characteristics of attributes
Acknowledgements. This research is financially supported by the Russian Scientific Foundation, Agreement 24-71-10093, https://rscf.ru/ en/project/24-71-10093/.
References
Acknowledgements. This research is financially supported by the Russian Scientific Foundation, Agreement 24-71-10093, https://rscf.ru/ en/project/24-71-10093/.
References
- Palowitch J., Tsitsulin A., Mayer B., Perozzi B. Graphworld: Fake graphs bring real insights for GNNs. Proc. of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 3691–3701. https://doi.org/10.1145/3534678.3539203
- Hu W., Fey M., Zitnik M., Dong Y., Ren H., Liu B., Catasta M., Leskovec J. Open graph benchmark: Datasets for machine learning on graphs. Advances in Neural Information Processing Systems, 2020, vol. 33, pp. 22118–22133.
- Shah N. Scale-free, attributed and class-assortative graph generation to facilitate introspection of graph neural networks. Proc. of the MLG '20: ACM Symposium on Neural Gaze Detection, 2020.
- Maekawa S., Sasaki Y., Fletcher G., Onizuka M. Gencat: Generating attributed graphs with controlled relationships between classes, attributes, and topology. Information Systems, 2023, vol. 115, pp. 102195. https://doi.org/10.1016/j.is.2023.102195
- Kim M., Leskovec J. Multiplicative attribute graph model of real-world networks. Internet mathematics, 2012, vol. 8, no. 1-2, pp. 113–160. https://doi.org/10.1080/15427951.2012.625257
- Tsitsulin A., Rozemberczki B., Palowitch J., Perozzi B. Synthetic graph generation to benchmark graph learning. arXiv, 2022, arXiv:2204.01376. https://doi.org/10.48550/arXiv.2204.01376
- Largeron C., Mougel P.-N., Rabbany R., Zaïane O.R. Generating attributed networks with communities. PLoS ONE, 2015, vol. 10, no. N 4, pp. e0122777. https://doi.org/10.1371/journal.pone.0122777
- BarabásiA.-L. The Barabási-Albert Model.Network Science, 2016, pp. 164–202.
- Tseng A.M., Diamant N., Biancalani T., Scalia G. GraphGUIDE: interpretable and controllable conditional graph generation with discrete bernoulli diffusion. arXiv, 2023, arXiv:2302.03790. https://doi.org/10.48550/arXiv.2302.03790
- Li M., Kreacic E., Potluru V.K., Li P. GraphMaker: Can diffusion models generate large attributed graphs? arXiv, 2023, arXiv:2310.13833. https://doi.org/10.48550/arXiv.2310.13833
- Faez F., Dijujin N.H., Baghshah M.S., Rabiee H.R. SCGG: A deep structure-conditioned graph generative model. PLoS ONE, 2022, vol. 17, no. 11, P. e0277887. https://doi.org/10.1371/journal.pone.0277887
- Kipf T.N., Welling M. Variational graph auto-encoders. arXiv, 2016, arXiv:1611.07308. https://doi.org/10.48550/arXiv.1611.07308
- Simonovsky M., Komodakis N. Graphvae: Towards generation of small graphs using variational autoencoders. Lecture Notes in Computer Science, 2018, vol. 11139, pp. 412–422. https://doi.org/10.1007/978-3-030-01418-6_41
- Bojchevski A., Shchur O., Zügner D., Günnemann S. NetGAN: Generating graphs via random walks. arXiv, 2018, arXiv:1803.00816. https://doi.org/10.48550/arXiv.1803.00816
- Gasteiger J., Bojchevski A., Günnemann S. Predict then propagate: Graph neural networks meet personalized pagerank. arXiv, 2018, arXiv:1810.05997. https://doi.org/10.48550/arXiv.1810.05997
- Kim D., Oh A. How to find your friendly neighborhood: Graph attention design with self-supervision. arXiv, 2022, arXiv:2204.04879. https://doi.org/10.48550/arXiv.2204.04879
- Attar N., Aliakbary S., Nezhad Z.H. Automatic generation of adaptive network models based on similarity to the desired complex network. Physica A: Statistical Mechanics and its Applications, 2020, vol. 545, pp. 123353. https://doi.org/10.1016/j.physa.2019.123353
- Verstraaten M., Varbanescu A.L., de Laat C. Synthetic graph generation for systematic exploration of graph structural properties. Lecture Notes in Computer Science, 2017, vol. 10104, pp. 557–570. https://doi.org/10.1007/978-3-319-58943-5_45
- Barry A., Griffith J., O’Riordan C. An evolutionary and graph-rewriting based approach to graph generation. Proc. of the 7th International Joint Conference on Computational Intelligence (IJCCI 2015), 2015, vol. 1, pp. 237–243. https://doi.org/10.5220/0005597102370243
- Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, vol. 6, no. 2, pp. 182–197. https://doi.org/10.1109/4235.996017
- Erdos P., Renyi A. On the evolution of random graphs. The Structure and Dynamics of Networks, 2011, pp. 38–82.
- Koller D., Friedman N. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009, 1231 p.