doi: 10.17586/2226-1494-2025-25-3-466-474


Detecting fraud activities in financial transactions using SMOTENN model

I. Syamsuddin, S. Omsa, A. Rustam, D. Hasan


Read the full article  ';
Article in English

For citation:
Syamsuddin I., Omsa S., Rustam A., Hasan D. Detecting fraud activities in financial transactions using SMOTENN model. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no. 3, pp. 466–474. doi: 10.17586/2226-1494-2025-25-3-466-474


Abstract
The financial industry plays an important role in national economic growth. Because of their critical function, banks have become prime targets for numerous financial crimes. Among these, fraudulent financial transactions are regarded as a severe issue in the financial industry. Conventional approaches are frequently criticized for being ineffective in dealing with fraud in finance; therefore, machine learning approaches have a potential answer to deal with this problem. The goal of this research is to introduce a novel SMOTENN model to establish early detection of cyber fraudulent activities in financial transactions accurately. Two methods are used in this study: first, the Neural Network algorithm is applied to a dataset that contains unbalanced classes; second, the dataset is balanced using the SMOTE (Synthetic Minority Over-sampling Technique) algorithm first, followed by the Neural Network algorithm which we refer to as SMOTENN. The both models are assessed using evaluation metrics of Area Under the Curve, F1-score, precision, recall, specificity, accuracy, and processing time. The comparative analysis shows that the performance of the new SMOTENN model with a balanced dataset is significantly better than that of the neural network approach with an imbalanced dataset, implying that the new SMOTENN model is effective in detecting fraud activities in financial transactions.

Keywords: financial industry, bank, financial fraud, imbalanced dataset, SMOTE, neural network

Acknowledgements. The author would like to thank supports from Politeknik Negeri Ujung Pandang, Indonesia and Universitas Muhammadiyah Makassar, Indonesia.

References
  1. Hidajat T. Rural banks fraud: a story from Indonesia. Journal of Financial Crime, 2020, vol. 27, no. 3, pp. 933–943. https://doi.org/10.1108/jfc-01-2020-0010
  2. Syahria R. Detecting financial statement fraud using fraud diamond (A study on banking companies listed on the Indonesia Stock Exchange period 2012-2016). Asia Pacific Fraud Journal, 2019, vol. 4, no. 2, pp. 183–190. https://doi.org/10.21532/apfjournal.v4i2.114
  3. Nabila P., Omsa S., Bravely I. Financial performance analysis of KSP Berkat Bulukumba in year 2018-2022. AKUNSIKA: Jurnal Akuntansi dan Keuangan, 2025, vol. 6, no. 1, pp. 10–20. https://doi.org/10.31963/akunsika.v6i1.4902
  4. Tjambolang T.A., Radjab E., Hamid A. Financial technology dan gaya hidup dalam perilaku keuangan mahasiswa Politeknik Negeri Ujung Pandang. Proc. of the Seminar Nasional Terapan Riset Inovatif (SENTRINOV), 2023, vol. 9, no. 2, pp. 355–362. (in Indonesian)
  5. Omsa S., Hasan D., Bravely I., Suryadi A.S., Ischika A.P. Peningkatan kinerja keuangan “Anisah Catering” melalui peningkatan manajemen usaha mikro. Proc. of the Seminar Nasional Terapan Riset Inovatif (SENTRINOV), 2023, vol. 9, no. 3, pp. 66–73. (in Indonesian)
  6. Lim K.S., Lee L.H., Sim Y.W. A review of machine learning algorithms for fraud detection in credit card transaction. International Journal of Computer Science & Network Security, 2021, vol. 21, no. 9, pp. 31–40.
  7. Ali A., Abd Razak S., Othman S.H., Eisa T.A.E., Al-Dhaqm A., Nasser M., Elhassan T., Elshafie H., Saif A. Financial fraud detection based on machine learning: a systematic literature review. Applied Sciences, 2022, vol. 12, no. 19, pp. 9637. https://doi.org/10.3390/app12199637
  8. Syamsuddin I., Hwang J. The application of AHP model to guide decision makers: a case study of e-banking security. Proc. of the Fourth International Conference on Computer Sciences and Convergence Information Technology, 2009, pp. 1469–1473. https://doi.org/10.1109/iccit.2009.251
  9. Gupta A., Lohani M.C., Manchanda M. Financial fraud detection using naive bayes algorithm in highly imbalance data set. Journal of Discrete Mathematical Sciences and Cryptography, 2021, vol. 24, no. 5, pp. 1559–1572. https://doi.org/10.1080/09720529.2021.1969733
  10. El-Naby A., Hemdan E.E.D., El-Sayed A. An efficient fraud detection framework with credit card imbalanced data in financial services. Multimedia Tools and Applications, 2023, vol. 82, no. 3, pp. 4139–4160. https://doi.org/10.1007/s11042-022-13434-6
  11. Tebala D., Marino D. Companies and artificial intelligence: an example of clustering with orange. Studies in Systems, Decision and Control, 2023, vol. 222, pp. 1–12. https://doi.org/10.1007/978-3-031-33461-0_1
  12. Raqib F., Dunne M., Gurney J., Harle D.E., Sivapalan T., Sabokbar N., Bhogal-Bhamra G.K. Translational learning with orange data mining. Proc. of the 11th International Conference on Research Advancement Resilience in the Pandemic Era: A Drive for Innovative Transformation, 2021.
  13. Ariyanto R., Bone H. Fraud awareness in Indonesian governmental sector: Multi-agency responses. Review of Integrative Business and Economics Research, 2020, vol. 9, no. 2, pp. 209–222.
  14. Ikbal M., Irwansyah I., Paminto A., Ulfah Y., Darma D.C. Financial intelligence: Financial statement fraud in Indonesia. Journal of Intelligence Studies in Business, 2020, vol. 10, no. 3, pp. 80–95. https://doi.org/10.37380/jisib.v10i3.640
  15. Taneja S., Suri B., Kothari C. Application of balancing techniques with ensemble approach for credit card fraud detection. Proc. of the International Conference on Computing, Power and Communication Technologies (GUCON), 2019, pp. 753–758.
  16. Saragih M.G., Chin J., Setyawasih R., Nguyen P.T., Shankar K. Machine learning methods for analysis fraud credit card transaction. International Journal of Engineering and Advanced Technology (IJEAT), 2019, vol. 8, no. 6 S, pp. 870–874.
  17. Hashemi S.K., Mirtaheri S.L., Greco S. Fraud detection in banking data by machine learning techniques. IEEE Access, 2023, vol. 11, pp. 3034–3043. https://doi.org/10.1109/ACCESS.2022.3232287
  18. Tadvi F., Shinde S., Patil D., Dmello S. Real time credit card fraud detection. International Research Journal of Engineering and Technology, 2021, vol. 8, no. 5, pp. 2177–2180.
  19. Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, vol. 16, pp. 321–357. https://doi.org/10.1613/jair.953
  20. Fernández A., Garcia S., Herrera F., Chawla N.V. SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. Journal of Artificial Intelligence Research, 2018, vol. 61, pp. 863–905. https://doi.org/10.1613/jair.1.11192
  21. Elreedy D., Atiya A.F., Kamalov F. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Machine Learning, 2024, vol. 113, no. 7, pp. 4903–4923. https://doi.org/10.1007/s10994-022-06296-4
  22. Veigas K.C., Regulagadda D.S., Kokatnoor S.A. Optimized stacking ensemble (OSE) for credit card fraud detection using synthetic minority oversampling model. Indian Journal of Science and Technology, 2021, vol. 14, no. 32, pp. 2607–2615. https://doi.org/10.17485/ijst/v14i32.807
  23. Syamsuddin I., Barukab O.M. SUKRY: Suricata IDS with enhanced kNN algorithm on Raspberry Pi for classifying IoT botnet attacks. Electronics, 2022, vol. 11, no. 5, pp. 737. https://doi.org/10.3390/electronics11050737
  24. Makki S., Assaghir Z., Taher Y., Haque R., Hacid M.S., Zeineddine H. An experimental study with imbalanced classification approaches for credit card fraud detection. IEEE Access, 2019, vol. 7, pp. 93010–93022. https://doi.org/10.1109/ACCESS.2019.2927266
  25. Alam T.M., Shaukat K., Hameed I.A., Luo S.H., Sarwar M.U., Shabbir S., Li J.M., Khushi M. An investigation of credit card default prediction in the imbalanced datasets. IEEE Access, 2020, vol. 8, pp. 201173–201198. https://doi.org/10.1109/access.2020.3033784
  26. Moro S., Cortez P., Rita P. A data-driven approach to predict the success of bank telemarketing. Decision Support Systems, 2014, vol. 62, pp. 22–31. https://doi.org/10.1016/j.dss.2014.03.001
  27. Kawam A.A., Mansour N. Metaheuristic optimization algorithms for training artificial neural networks. International Journal of Computer and Information Technology, 2012, vol. 1, no. 2, pp. 156–161.
  28. Quiroga F.M. Invariance and same-equivariance measures for convolutional neural networks. CLEI Electronic Journal, 2021, vol. 24, no. 1 SI. https://doi.org/10.19153/cleiej.24.1.8
  29. Alla H., Moumoun L., Balouki Y. A multilayer perceptron neural network with selective‐data training for flight arrival delay prediction. Scientific Programming, 2021, vol. 2021, pp. 5558918. https://doi.org/10.1155/2021/5558918


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика