doi: 10.17586/2226-1494-2025-25-6-1014-1023


Modeling and study of FBG interrogator based on a two-dimensional image sensor

S. Venkatesan, S. Ponnusamy, P. Chelliah


Read the full article  ';
Article in English

For citation:
Venkatesan S., Ponnusamy S., Chelliah P. Modeling and study of FBG interrogator based on a two-dimensional image sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no. 6, pp. 1014–1023. doi: 10.17586/2226-1494-2025-25-6-1014-1023


Abstract
Fiber Bragg Grating (FBG) interrogators contain a movable scattering element that tracks the FBG central wavelength. The movable element of the interrogator limits the interrogation speed. This paper proposes an interrogation method that does not use movable elements. This is achieved by using an Array Waveguide (AWG) to split the FBG reflected spectrum and a Convolutional Neural Network (CNN) for training to determine the central wavelength. Most of the known studies consider the AWG output as a one-dimensional data array for training the neural network. However, CNNs work best with two-dimensional images. This paper proposes to transform the AWG output using a two-dimensional image sensor with a circular configuration. This allows for higher accuracy and improved resolution in predicting the central wavelength. The AWG signal is projected onto a two-dimensional image sensor which has either a grid or a circular configuration. The number of AWG channels used is 32, which corresponds to a distance between channel wavelengths of 0.0625 nm. The circular configuration enables more accurate feature extraction using CNN. A 32-beam passive waveguide array in a circular configuration is used for FBG interrogation. It projects the FBG output signals onto the image sensor, enabling high-resolution Bragg wavelength prediction. Computer simulation of the proposed interrogation device demonstrated a predicted resolution of ±1 pm with 98 % accuracy. It should be noted that the presented values are estimates and are subject to refinement using a hardware prototype. Such devices are relatively easy to manufacture and are readily available to consumers.

Keywords: fiber Bragg grating interrogator, convolutional neural network, arrayed waveguide grating, image sensor

References
1. Zhou Z., Ou J. Development of FBG sensors for structural health monitoring in civil infrastructures. Sensing Issues in Civil Structural Health Monitoring, 2005, pp. 197–207. https://doi.org/10.1007/1-4020-3661-2_20
2. Kahandawa G.C., Epaarachchi J., Wang H., Lau K.T.Use of FBG sensors for SHM in aerospace structures. Photonic Sensors, 2012, vol. 2, no. 3, pp. 203–214. https://doi.org/10.1007/s13320-012-0065-4
3. Lee J.R., Chong S.Y., Yun C.Y., Sohn H. Design of Fiber Bragg Grating acoustic sensor for structural health monitoring of nuclear power plant. Advanced Materials Research, 2010, vol. 123-125, pp. 859–862. https://doi.org/10.4028/www.scientific.net/amr.123-125.859
4. Riza M.A., Go Y.I., Harun S.W., Maier R.R.J. FBG sensors for environmental and biochemical applications review. IEEE Sensors Journal, 2020, vol. 20, no. 14, pp. 7614–7627. https://doi.org/10.1109/jsen.2020.2982446
5. Presti D.L., Massaroni C., Leitao C.S.J., Domingues M.D., Sypabekova M., Barrera D., et al. Fiber Bragg Gratings for medical applications and future challenges: areview. IEEE Access, 2020, vol. 8, pp. 156863–156888. https://doi.org/10.1109/ACCESS.2020.3019138
6. Kashyap R. Fiber Bragg Gratings. Academic press, 2009, 458 p.
7. Sengupta D. Fiber Bragg Grating sensors and interrogation systems. Optical Fiber Sensors Advanced Techniques and Applications, 2015, pp. 207–256.
8. Santos J.L., Ferreira L.A., Araujo F.M. Fiber Bragg Grating interrogation systems. Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, 2011, pp. 78–98.
9. Cui J., Hu Y., Feng K., Li J., Tan J. FBG interrogation method with high resolution and response speed based on a reflective-matched FBG scheme. Sensors, 2015, vol. 15, no. 7, pp. 16516–16535. https://doi.org/10.3390/s150716516
10. Diaz C.A., Leitão C., Marques C.A., Domingues M., Alberto N., Pontes M., et al. Low-cost interrogation technique for dynamic measurements with FBG-based devices.Sensors, 2017, vol. 17, no. 10, pp. 2414. https://doi.org/10.3390/s17102414
11. Lei M., Zou W., Li X., Chen J. Ultrafast FBG interrogator based on time-stretch method. IEEE Photonics Technology Letters, 2016, vol. 28, no. 7, pp. 778-781. https://doi.org/10.1109/LPT.2015.2513903
12. Marrazzo V.R., Fienga F., Riccio M., Irace A., Breglio G. Multichannel approach for arrayed waveguide grating-based FBG interrogation systems. Sensors, 2021, vol. 21, no. 18, pp. 6214. https://doi.org/10.3390/s21186214
13. Niewczas P., Willshire A.J., Dziuda L., McDonald J.R. Performance analysis of the Fiber Bragg Grating interrogation system based on an arrayed waveguide grating. IEEE Transactions on Instrumentation and Measurement, 2004, vol. 53, no. 4, pp. 1192–1196. https://doi.org/10.1109/tim.2004.830780
14. Marrazzo V.R., Fienga F., Laezza D., Riccio M., Irace A., Buontempo S., Breglio G. Full analog fiber optic monitoring system based on arrayed waveguide grating. Journal of Lightwave Technology, 2021, vol. 39, no. 15, pp. 4990–4996. https://doi.org/10.1109/jlt.2021.3083061
15. Trita A., Vickers G., Mayordomo I.,van Thourhout D., Vermeiren J. Design, integration, and testing of a compact FBG interrogator, based on an AWG spectrometer. Proceedings of SPIE, 2014, vol. 9133, pp. 91330D. https://doi.org/10.1117/12.2058107
16. Barino F.O., dos Santos A.B. LPG interrogator based on FBG array and artificial neural network. IEEE Sensors Journal,2020, vol. 20, no. 23, pp. 14187–14194. https://doi.org/10.1109/JSEN.2020.3007957
17. Chen S., Yao F., Ren S., Wang G., Huang M. Cost-effective improvement of the performance of AWG-based FBG wavelength interrogation via a cascaded neural network. Optics Express, 2022, vol. 30, no. 5, pp. 7647–7663. https://doi.org/10.1364/oe.449004
18. Ren S., Chen S., Yang J., Wang J., Yang Q., Xue C., et al. High-efficiency FBG array sensor interrogation system via a neural network working with sparse data. Optics Express, 2023, vol. 31, no. 5, pp. 8937–8952. https://doi.org/10.1364/oe.479708
19. Tan Z., Ren W., Liu Z, Feng S., Chen Z. Fiber Bragg Grating sensor interrogator based on 2D imaging system. Applied Optics, 2014, vol. 53, no. 23, pp. 5259–5263. https://doi.org/10.1364/ao.53.005259
20. Jiang X., Yang Z., Wu L., Dang Z., Ding Z., Liu Z., et al. Fiber spectrum analyzer based on planar waveguide array aligned to a camera without lens. Optics and Lasers in Engineering, 2022, vol. 159, pp. 107226. https://doi.org/10.1016/j.optlaseng.2022.107226
21. Ding Z., Chang Q., Deng Z., Ke S., Jiang X., Zhang Z. FBG interrogator using a dispersive waveguide chip and a CMOS camera. Micromachines, 2024, vol. 15, no. 10, pp. 1206. https://doi.org/10.3390/mi15101206
22. Phing H.S., Ali J., Rahman R.A., Tahir B.A. Fiber Bragg Grating modeling, simulation and characteristics with different grating lengths. Malaysian Journal of Fundamental and Applied Sciences, 2007, vol. 3, no. 2, pp. 167–175. https://doi.org/10.11113/mjfas.v3n2.26
23. Ikhlef A., Hedara R., Chikh-Bled M. Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method.International Journal of Computer Science Issues, 2012, vol. 9, no. 1, pp. 368–374.
24. Ismail N., Sun F., Sengo G., Wörhoff K., Driessen A., de Ridder R.M., Pollnau M. Improved arrayed-waveguide-grating layout avoiding systematic phase errors. Optics Express, 2011, vol. 19, no. 9, pp. 8781–8794. https://doi.org/10.1364/oe.19.008781


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.

Яндекс.Метрика