doi: 10.17586/2226-1494-2021-21-4-553-561


The 29th General Annual Meeting of the International Academy of Refrigeration



Read the full article  ';
Article in русский

For citation:
Беззатеев С.В., Елина Т.Н., Мыльников В.А., Лившиц И.И. Методика оценки рисков информационных систем на основе анализа поведения пользователей и инцидентов информационной безопасности // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21, № 4. С. 553–561. doi: 10.17586/2226-1494-2021-21-4-553-561


Abstract

On April 21, 2022, the 29th General Annual Meeting of the International Academy of Refrigeration (IACH) was held at the St. Petersburg National Research University ITMO (ITMO University). The meeting was held in a mixed mode: in person and online on the ZOOM platform. The meeting was led by Professor of ITMO University, Academician V.A. Pronin. Academician A.V. Baranenko, President of the IACH, made a report on the activities of the Academy over the past period and tasks for the future. Member of the Audit Commission Academician E.I. Kiprushkina reported on the work of the Audit Commission of the IACH. According to the results of the elections, the Academy was replenished with 10 full members (academicians), 16 corresponding members and 5 academic advisers. Currently, the Academy has 1,756 members, including: 16 honorary academicians, 787 full members (academicians), 772 corresponding members and 181 academic advisors. The speakers were: General Director of LLC "Protein Plus" (St. Petersburg) Academician MAX V.N. Krasilnikov and Commercial Director of LLC "Cascade-Automation" (Moscow) corresponding member MAX K.A. According to the results of the General Annual Meeting of the Academy, a detailed resolution was adopted.


Keywords: model, research, heat distribution, starch, pectin, mound of raw materials, controlled, effects.

Acknowledgements. Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта (грант № 19-08-00865 А).

References
1. Kreutz D., Ramos F.M.V., Verissimo P.E., Rothenberg C.E., Azodolmolky S., Uhlig S. Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 2015, vol. 103, no. 1, pp. 14–76. doi: 10.1109/JPROC.2014.2371999
2. Dhawan M., Poddar R., Mahajan K., Mann V.  SPHINX: Detecting security attacks in software-defined networks. Proc. 2015 Network and Distributed System Security Symposium, 2015, pp. 8–11. doi: 10.14722/ndss.2015.23064
3. Hong S., Xu L., Wang H., Gu G. Poisoning network visibility in software-defined networks: New attacks and countermeasures. Proc. 2015 Network and Distributed System Security Symposium, 2015. doi: 10.14722/ndss.2015.23283
4. Feamster N., Rexford J., Zegura E. The Road to SDN: An intellectual history of programmable networks. Queue, 2013, vol. 11, no. 12, pp. 2560327. doi: 10.1145/2559899.2560327
5. Nathan A.J. Scobell A. How China sees America: The Sum of Beijing's Fears. Foreign Affairs, 2012, vol. 91, no. 5, pp. 32–47.
6. Droms R. RFC 2131 - Dynamic Host Configuration Protocol. 1997. Available at: https://tools.ietf.org/html/rfc2131 (accessed: 04.11.2020).
7. Plummer D. An Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware. doi: 10.17487/RFC0826
8. Nehra A., Tripathi M., Gaur M.S. FICUR: Employing SDN programmability to secure ARP. Proc. 7th IEEE Annual Computing and Communication Workshop and Conference. (CCWC), 2017, pp. 7868450. doi: 10.1109/CCWC.2017.7868450
9. Alharbi T., Durando D., Pakzad F., Portmann M. Securing ARP in Software Defined Networks. Proc. 41st IEEE Conference on Local Computer Networks (LCN), 2016, pp. 523–526. doi: 10.1109/LCN.2016.83
10. Jehan N. Haneef A.M. Scalable Ethernet Architecture using SDN by Suppressing broadcast traffic. Proc. 5th International Conference on Advances in Computing and Communications (ICACC), 2015, pp. 24–27. doi: 10.1109/ICACC.2015.66
11. De Oliveira R., Shinoda A., Schweitzer C., Iope R., Prete L. L3-ARPSec – A Secure Openflow Network Controller Module to control and protect the Address Resolution Protocol. Proc. XXXIII Simpósio Brasileiro de Telecomunicações, 2015, pp. 1–4. doi: 10.14209/sbrt.2015.29
12. Jero S., Koch W., Skowyra R., Okhravi H., Nita-Rotaru C., Bigelow D. Identifier binding attacks and defenses in software-defined networks. Proc. 26th USENIX Security Symposium, 2017, pp. 415–432.
13. Balagopal D., Rani X.A.K. NetWatch: Empowering software-defined network switches for packet filtering. Proc. 1st International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), 2015, pp. 837–840. doi: 10.1109/ICATCCT.2015.7456999
14. Cox J.H., Clark R.J., Owen H.L. Leveraging SDN for ARP security. Proc. IEEE SoutheastCon 2016, 2016, pp. 7506644. doi: 10.1109/SECON.2016.7506644
15. Shah Z., Cosgrove S. Mitigating ARP Cache Poisoning attack in Software-Defined Networking (SDN): A survey. Electronics, 2019, vol. 8, no. 10, pp. 1095. doi: 10.3390/electronics8101095
16. Bruschi D., Ornaghi A., Rosti E. S-ARP: A secure address resolution protocol. Proc. 19th Annual Computer Security Applications Conference (ACSAC), 2003, pp. 66–74. doi: 10.1109/CSAC.2003.1254311
17. Hou X., Jiang Z., Tian X. The detection and prevention for ARP Spoofing based on Snort. Proc. 2010 International Conference on Computer Application and System Modeling (ICCASM), 2010, pp. V5137–V5139. doi: 10.1109/ICCASM.2010.5619113
18. Ortega A.P., Marcos X.E., Chiang L.D., Abad C.L. Preventing ARP cache poisoning attacks: A proof of concept using OpenWrt. Proc. 6th IEEE/IFIP Latin American Network Operations and Management Symposium (LANOMS), 2009, pp. 5338799. doi: 10.1109/LANOMS.2009.5338799


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика