doi: 10.17586/2226-1494-2021-21-4-553-561

Petrenko A.A., Kovalev A.V., Bougrov V.E.
Random number generation with arrays of coupled quantum-dot micropillar lasers

Read the full article  ';
Article in русский

For citation:
Беззатеев С.В., Елина Т.Н., Мыльников В.А., Лившиц И.И. Методика оценки рисков информационных систем на основе анализа поведения пользователей и инцидентов информационной безопасности // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21, № 4. С. 553–561. doi: 10.17586/2226-1494-2021-21-4-553-561


Shelf life and quality of raw materials depend on the most favorable conditions for long-term storage. The rational storage time, that is, the longest period at which the loss of quality and nutritional value of the raw material does not exceed the allowable limit, depends on the temperature and humidity conditions. The temperature should be kept as constant as possible throughout the entire storage period, since its fluctuations even within 5 °C can seriously affect the safety of products. On the territory of the Russian Federation, the outdoor air temperature fluctuates during the day by approximately 5 to 15 °C, reaching 30 °C in some regions. The seasonal temperature also changes significantly. The optimal storage limits for starch or pectin-containing raw materials are 0-5 °C. One of the modes of storage of raw materials is storage in a refrigerated state (that is, at the temperature of the raw materials and the surrounding space lowered to –10 °C). Such conditions can be created by equipping storage facilities with facilities for artificial cooling. Using analytical estimates of temperature changes during heat redistribution under the influence of controlled operational factors, we can objectively judge the rational conditions of storage of raw materials and predict storage periods.

Keywords: model, research, heat distribution, starch, pectin, mound of raw materials, controlled, effects.

Acknowledgements. Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта (грант № 19-08-00865 А).

1. Kreutz D., Ramos F.M.V., Verissimo P.E., Rothenberg C.E., Azodolmolky S., Uhlig S. Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 2015, vol. 103, no. 1, pp. 14–76. doi: 10.1109/JPROC.2014.2371999
2. Dhawan M., Poddar R., Mahajan K., Mann V.  SPHINX: Detecting security attacks in software-defined networks. Proc. 2015 Network and Distributed System Security Symposium, 2015, pp. 8–11. doi: 10.14722/ndss.2015.23064
3. Hong S., Xu L., Wang H., Gu G. Poisoning network visibility in software-defined networks: New attacks and countermeasures. Proc. 2015 Network and Distributed System Security Symposium, 2015. doi: 10.14722/ndss.2015.23283
4. Feamster N., Rexford J., Zegura E. The Road to SDN: An intellectual history of programmable networks. Queue, 2013, vol. 11, no. 12, pp. 2560327. doi: 10.1145/2559899.2560327
5. Nathan A.J. Scobell A. How China sees America: The Sum of Beijing's Fears. Foreign Affairs, 2012, vol. 91, no. 5, pp. 32–47.
6. Droms R. RFC 2131 - Dynamic Host Configuration Protocol. 1997. Available at: (accessed: 04.11.2020).
7. Plummer D. An Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware. doi: 10.17487/RFC0826
8. Nehra A., Tripathi M., Gaur M.S. FICUR: Employing SDN programmability to secure ARP. Proc. 7th IEEE Annual Computing and Communication Workshop and Conference. (CCWC), 2017, pp. 7868450. doi: 10.1109/CCWC.2017.7868450
9. Alharbi T., Durando D., Pakzad F., Portmann M. Securing ARP in Software Defined Networks. Proc. 41st IEEE Conference on Local Computer Networks (LCN), 2016, pp. 523–526. doi: 10.1109/LCN.2016.83
10. Jehan N. Haneef A.M. Scalable Ethernet Architecture using SDN by Suppressing broadcast traffic. Proc. 5th International Conference on Advances in Computing and Communications (ICACC), 2015, pp. 24–27. doi: 10.1109/ICACC.2015.66
11. De Oliveira R., Shinoda A., Schweitzer C., Iope R., Prete L. L3-ARPSec – A Secure Openflow Network Controller Module to control and protect the Address Resolution Protocol. Proc. XXXIII Simpósio Brasileiro de Telecomunicações, 2015, pp. 1–4. doi: 10.14209/sbrt.2015.29
12. Jero S., Koch W., Skowyra R., Okhravi H., Nita-Rotaru C., Bigelow D. Identifier binding attacks and defenses in software-defined networks. Proc. 26th USENIX Security Symposium, 2017, pp. 415–432.
13. Balagopal D., Rani X.A.K. NetWatch: Empowering software-defined network switches for packet filtering. Proc. 1st International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), 2015, pp. 837–840. doi: 10.1109/ICATCCT.2015.7456999
14. Cox J.H., Clark R.J., Owen H.L. Leveraging SDN for ARP security. Proc. IEEE SoutheastCon 2016, 2016, pp. 7506644. doi: 10.1109/SECON.2016.7506644
15. Shah Z., Cosgrove S. Mitigating ARP Cache Poisoning attack in Software-Defined Networking (SDN): A survey. Electronics, 2019, vol. 8, no. 10, pp. 1095. doi: 10.3390/electronics8101095
16. Bruschi D., Ornaghi A., Rosti E. S-ARP: A secure address resolution protocol. Proc. 19th Annual Computer Security Applications Conference (ACSAC), 2003, pp. 66–74. doi: 10.1109/CSAC.2003.1254311
17. Hou X., Jiang Z., Tian X. The detection and prevention for ARP Spoofing based on Snort. Proc. 2010 International Conference on Computer Application and System Modeling (ICCASM), 2010, pp. V5137–V5139. doi: 10.1109/ICCASM.2010.5619113
18. Ortega A.P., Marcos X.E., Chiang L.D., Abad C.L. Preventing ARP cache poisoning attacks: A proof of concept using OpenWrt. Proc. 6th IEEE/IFIP Latin American Network Operations and Management Symposium (LANOMS), 2009, pp. 5338799. doi: 10.1109/LANOMS.2009.5338799

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.