ANALYSIS METHOD OF ANISOTROPIC LIGHTGUIDE h -PARAMETER DEPENDENCE ON ITS BENDING RADIUS

O. A. Shramko, A. V. Rupasov, R. L. Novikov, S. M. Aksarin


Read the full article  ';

Abstract

The paper deals with the known methods for h-parameter measuring of the fiber and the new developed interferometry method. Analysis method of the anisotropic lightguide h-parameter dependence on its bending radius for the optical fiber is proposed. Micro bends of a fiber, being the defects of a sensitive element winding in a fiber-optic gyroscope (FOG), lead to the deterioration of a number of optical characteristics, in particular, the extinction coefficient and the cross-coupling coefficient. As a result, it worsens the FOG accuracy. The way of increasing the measurement accuracy and adaptation of the h-parameter measuring process to the existing technology of fiber-optic gyroscopes production is proposed. The mechanism of the polarization properties influence on the FOG accuracy is described through the analysis of secondary waves induced by the polarization transformation in the optical circuit. The influence estimation of the measured parameter on the FOG accuracy characteristics is given. For the gyro with the polarizer extinction coefficient equal to 27 dB, h-parameter 2·10-5 m-1, the length of the fiber loop 1500 m and the length of depolarization 4 mm the amplitude phase error does not exceed 3.2·10-5 rad and the intensity phase error is 2·10-10 rad.


Keywords: optical fiber, interference, extinction coefficient, h-parameter, lightguide

References
1. Мешковский И.К., Киселев С.С., Куликов А.В., Новиков Р.Л. Дефекты намотки оптического волокна при изготовлении чувствительного элемента волоконно-оптического интерферометра // Изв. вузов. Приборостроение. 2010. Т. 53. № 2. С. 47–51.
2. Li Y., Chen X. Effect of highly birefringence fibers on fiber optic gyroscope // Proc. of SPIE. 2007. V. 6423. 64233S-1–64233S-6.
3. Gu H., Yang G., Yang Y., Weng H., Zhao Q. Analysis and simulation of optical polarization fluctuation of interferometric fiber optic gyroscope // Proc. of SPIE. 2007. V. 6595. 65953N-1–65953N-6.
4. Wang X., He Z., Hotate K. Reduction of polarization-fluctuation induced drift in resonator fiber optic gy.ro by a resonator with twin 90° polarization-axis rotated splices // Optics Express. 2010. V. 18. N 2. P. 1677–1683.
5. Котов О.И., Лиокумович Л.Б., Медведев А.В. Интерференционный метод измерения коэффициента экстинкции двулучепреломляющих волоконных световодов // ЖТФ. 2007. Т. 77. № 9. С. 102–107.
6. Азам Р., Башара Н. Эллипсометрия и поляризованный свет. М.: Мир, 1981. 584 c.
7. Lefevre H. The Fiber Optic Gyroscope. Boston–London: Artech House, 1993. 313 p.
8. Xu X., Pan X., Song J. Analysis of sensing coil polarization properties’ effect on performance of fiber optical gyroscope // Applied Optics. 2012. V. 51. N 5. P. 621–625.
9. Cordova A., Patterson R.A., Goldner E.L., Rozelle D.M. Interferometric fiber optic gyroscope with inertial navigation performance over extended dynamic environments // Proc. of SPIE. 1994. V. 2070. P. 164–180.
10. Малыкин Г.Б. Модуляционный метод устранения вызванного поляризационной невзаимностью сдвига нуля волоконного кольцевого интерферометра // Письма в ЖТФ. 1999. Т. 25. № 16. С. 78–82.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика