OPTIMAL CONTROL SYSTEM FOR PRECISION ELECTRIC DRIVE WITH GUARANTEED DEGREE OF STABILITY

A. A. Abdullin, V. N. Drozdov, A. A. Plotitsyn


Read the full article  ';
Article in Russian


Abstract

Improved design method of optimal control system for the linear object with elastic coupling is considered. Standard optimal control system design implies the selection of state and input penalty matrix for the quadratic functional. Moreover the system performance quality depends greatly on the specific penalty matrix. Instead of the state and input penalty matrix selection procedure the selection of desired stability degree is proposed. The proposed method of optimal control system design is based on the idea of new state matrix utilization. The new state matrix has its eigenvalues at the specified distance to the right from the eigenvalues of the original state matrix. Thereupon we can assign the closed loop state feedback system matrix eigenvalues at that specified distance to the left from imaginary axis of the complex plane, in the other words, we can achieve the desired stability degree of the system. The proposed method of control algorithm design is demonstrated for a control system of an electric drive with two-mass mechanism (object). Object characteristic was evaluated by amplitudefrequency response obtained during identification experiment. Unavailable or immeasurable variables of the control object state were estimated by reduced-order observer while optimal control system design.


Keywords: optimal control system, reduced-order observer, two-mass mechanism, state regulator, stability degree

References
 1.          Vasiliev V.N., Tomasov V.S., Shargorodsky V.D., Sadovnikov M.A. Sostoyanie i perspektivy razvitiya pretsizionnykh elektroprivodov kompleksov vysokotochnykh nablyudenii [Precision electric drive systems used in high accuracy complexes of watching for space objects, current statement and development prospects]. Izv. vuzov. Priborostroenie, 2008, vol. 51, no. 6, pp. 5–12.
2.          Tomasov V.S., Denisov K.M., Tolmachev V.A. Sledyashchie elektroprivody sistem navedeniya optiko-mekhanicheskikh kompleksov novogo pokoleniya. Problemy i dostizheniya [Tracking electric drives of guidance systems in optomechanical systems of new generation. Problems and achievements]. Trudy V mezhdunarodnoi (XVI Vserossiiskoi) konferentsii po avtomatizirovannomu elektroprivodu [Proc. of V Int. Conf. by automated electric drive]. St. Petersburg, 2007, pp. 175–177.
3.          Sinitsin V.A., Tomasov V.S. Energopodsistemy sledyashchikh elektroprivodov izmeritel'nykh teleskopov [Power subsystems of tracking electric drives used in measurement telescopes]. Izv. vuzov. Priborostroenie, 2008, vol. 51, no. 6, pp. 12–17.
4.          Tolmachev V.A., Antipova I.V., Fomin S.G. Matematicheskaya model' sledyashchego elektroprivoda osi oporno-povorotnogo ustroistva [A mathematical model of the servo electric drive of support-rotating positioner axis]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2007, no 10 (44), pp. 142–146.
5.          Tolmachev V.A. Sintez sledyashchego elektroprivoda osi oporno-povorotnogo ustroistva [Synthesis of tracking electric drive used for the axis of turret bearing mechanism]. Izv. vuzov. Priborostroenie, 2008, vol. 51, no. 6, pp. 68–72.
6.          Drozdov V.N., Miroshnik I.V., Skorubskii V.I. Sistema avtomaticheskogo upravleniya s mikroEVM [Automatic control system with microcomputer]. Leningrad, Mashinostroenie Publ., 1989, 284 p.
7.          Grigor'ev V.V., Drozdov V.N., Lavrent'ev V.V., Ushakov A.V. Sintez diskretnykh regulyatorov pri pomoshchi EVM [Synthesis of discrete controllers using computer]. Leningrad, Mashinostroenie Publ., 1983, 245 p.
8.          Abdullin A.A., Drozdov V.N. Analiz robastnosti neadaptivnoi sistemy upravleniya elektroprivoda s variatsiyami struktury i parametrov [Robustness analysis of the electric drive non-adaptive control system with structure and parameters variations].Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 6 (82), pp. 40–44.
9.          Abdullin A.A., Drozdov V.N. Sintez algoritma upravleniya pretsizionnogo sledyashchego elektroprivoda [Synthesis of control algorithm of precision tracking actuator]. Trudy VII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii po avtomatizirovannomu elektroprivodu [Proc. of VII International scientific-technical conference on automated electric drive]. Ivanovo, Russia, 2012, pp. 208–212.
10.       Kuzovkov N.T. Modal'noe upravlenie i nablyudayushchie ustroistva [Modal control and observing devices]. Moscow, Mashinostroenie Publ., 1976, 184 p.
11.       Fairman F. Linear Control Theory: The State Space Approach. John Wiley and Sons Ltd, 1998, 330 p.
12.       Kwakernaak H., Sivan R. Linear Optimal Control Systems. John Wiley and Sons Inc, 1972, 575 p.
13.       D'yakonov V.P. MATLAB 6/6.1/6.5 + Simulink 4/5. Osnovy primeneniya. Polnoe rukovodstvo pol'zovatelya [MATLAB 6/6.1/6.5 + Simulink 4/5. Bases of application. Full user manual]. Moscow, Solon-press Publ., 2002, 768 p.
14.       Aliksandrov A.G. Metody postroeniya sistem avtomaticheskogo upravleniya [Methods for building automatic control systems]. Moscow, IPU RAN Publ., 2008, 260 p.
15.       Gantmakher F.R. Teoriya matrits [Matrix theory]. Moscow, Nauka Publ., 1966, 576 p.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика