DOI: 10.17586/2226-1494-2015-15-5-789-795


УДКУДК 620.22-022.532

ЭЛЕКТРОННО-МИКРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ ПОРОШКОВ ИТТРИЙ-АЛЮМИНИЕВОГО ГРАНАТА Y3AL5O12, СИНТЕЗИРОВАННЫХ ЗОЛЬ-ГЕЛЬ МЕТОДОМ

Баранчиков А.Е., Маслов В.А., Щербаков В.В., Усачев В.А., Кононенко Н.Э., Федоров П.П., Дукельский К.В.


Читать статью полностью 
Язык статьи - русский

Ссылка для цитирования: Баранчиков А.Е., Маслов В.А., Щербаков В.В., Усачев В.А., Кононенко Н.Э., Федоров П.П., Дукельский К.В. Электронно-микроскопическое исследование порошков иттрий-алюминиевого граната Y3AL5O12, синтезированных золь-гель методом // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 5. С. 789–795.

Аннотация
Предмет исследования. Представлены результаты характеризации нанопорошков иттрий-алюминиевого граната, легированного неодимом – YAG:Nd3+, методом сканирующей электронной микроскопии. Метод. Синтез YAG:Nd3+ осуществляли золь-гель методом из нитратных или ацетатно-нитратных растворов с добавлением ряда органических соединений, а также аммиака. В качестве исходных веществ использовали оксиды неодима и иттрия с содержанием основного вещества 99,999%; органические соединения – лимонную кислоту с содержанием основного вещества не менее 99,0%; этиленгликоль (99,5%); лаурилсульфат аммония (99,0%); мочевину (99,0%) фирм Alfa Aesar, Fluka, Aldrich. Оксиды иттрия и неодима (5 ат.%) растворяли в 50% уксусной кислоте, добавляли азотнокислый алюминий в расчете на конечный продукт Y2,85Nd0,15Al5,0O12, раствор перемешивали, нагревали до 60 °С до достижения его прозрачности и однородности. Масса навески, соответствующей по стехиометрии YAG, составляла 2,0 г. В водные растворы, помещенные в стеклянные стаканчики, добавляли 50% водные растворы органических веществ или 5% NH4OH в весовом соотношении 1:1 к весу граната. Растворы тщательно перемешивали сначала с помощью обычной мешалки, затем на ультразвуковой установке при одновременном 60 °С нагреве в течение 2 часов. Сушку растворов до консистенции порошка или густого геля проводили при 110 °С. Далее образцы помещали в платиновые стаканчики и отжигали в трубчатой печи при 950–1050 °С в течение 0,5–2 часов. С целью осветления порошков для удаления остаточного аморфного углерода проводили дополнительный отжиг порошков на воздухе при 950–1060 °С. Основные результаты. Синтезированные порошкообразные прекурсоры и порошки после отжига исследовали с помощью поляризационного микроскопа с целью выявления анизотропных кристаллических фаз. Рентгенофазовый
анализ проводили на дифрактометрах ДРОН-4 и УДР-63, излучение λCu Kα. Для проведения исследований методом сканирующей электронной микроскопии использовали электронный микроскоп Carl Zeiss NVision 40. Полученные результаты свидетельствуют о существенном влиянии добавок в исходные ацетат-нитратные растворы на размер и
морфологию частиц при синтезе порошков иттрий-алюминиевого граната золь-гель методом. Сравнительно крупные частицы, не склонные к взаимному спеканию, получены при использовании в качестве добавок этиленгликоля и лаурилсульфата аммония. Практическая значимость. Синтезированные золь-гель методом порошки иттрий-алюминиевого граната с использованием в качестве добавок этиленгликоля и лаурилсульфата аммония могут представлять наибольший интерес для создания лазерной керамики YAG:Nd3+.

Ключевые слова: иттрий-алюминиевый гранат, прекурсор, лазерная керамика, нанопорошки.

Список литературы
1. Каминский А.А. Лазерные кристаллы. М.: Наука, 1975. 256 с.
 
2. Ueda K. Scaling laws of disk lasers // The 3rd Laser Ceramics Symposium. Paris, France, 2007. P. IO-C-1.
 
3. Mah T.-I., Parthasarathy T.A., Lee H.D. Polycrystalline YAG: structural or functional // Journal of Ceramic Processing Research. 2004. V. 5. N 4. P. 369–379.
 
4. Ikesue A., Yoshida K. Influence of pore volume on laser performance of Nd:YAG ceramics // Journal of Materials Science. 1999. V. 34. N 6. P. 1189–1195. doi: 10.1023/A:1004548620802
 
5. Lu J., Ueda K.-I., Yagi H., Yanagitani T., Akiyama Y., Kaminskii A.A. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics – a new generation of solid state laser and optical materials // Journal of Alloys Compounds. 2002. V. 341. N 1–2. P. 220–225.
 
6. Каминский А.А., Акчурин М.Ш., Гайнутдинов Р.В., Такайчи К., Ширакава А., Яги Х., Янагшпани Т., Уеда К. Микротвердость и вязкость разрушения лазерных Y2O3 и Y3Al5O12 нанокристаллических керамик // Кристаллография. 2005. Т. 50. № 5. С. 935–939.
 
7. Kaminskii А.А., Kravchenko V.B., Kopylov Yu.L. Novel polycrystalline laser material: Nd3+: Y3Al5O12 ceramics fabricated by the high-pressure colloidal slip casting (HPCSC) method // Physica Status Solidi (A) Applications and Materials Science. 2007. V. 204. N 7. P. 2411–2415. doi: 10.1002/pssa.200723198
 
8. Sanghera J., Shaw B., Kim W., Villalobos G., Baker C., Frantz J., Hunt M., Sadowski B., Aggarwal I. Ceramic Laser Materials // Proceedings of SPIE - The International Society for Optical Engineering. 2011. V. 7912. Art. 79121Q. doi: 10.1117/12.879521
 
9. Федоров П.П., Маслов В.А., Усачев В.А., Кононенко Н.Э. Синтез лазерной керамики на основе нанодисперсных порошков алюмоиттриевого граната Y3Al5O12 // Инженерный журнал: наука и инновации. 2012. № 8(8). С.3.
 
10. Wang Y., Wang B., Bo Y., Xu J., Song S., Peng Q., Xu Z., Liu W., Pan Y., Liu J. High efficiency, high power QCW diode-side-pumped Nd:YAG ceramic laser at 1064 nm based on domestic ceramic // Chinese Optics Letters. 2010. V. 8. N 12. P. 1144–1146. doi: 10.3788/COL20100812.1144
 
11. Gong H., Zhang J., Tang D.-Y., Xie G.-Q., Huang H., Ma J. Fabrication and laser performance of highly transparent Nd:YAG ceramics from well-dispersed Nd:Y2O3 nanopowders by freeze-drying // Journal of Nanoparticle Research. 2011. V. 13. N 9. P. 3853–3860. doi: 10.1007/s11051-011-0336-9
 
12. Зимина Г.В., Новоселов А.В., Смирнова И.Н., Спиридонов Ф.М., Пушкина Г.Я., Комисарова Л.Н. Синтез и исследование алюмоиттриевых гранатов, легированных неодимом и иттербием // Журнал неорганической химии. 2010. Т. 55. № 12. С. 1945–1948.
 
13. Katelnikovas A., Barkauskas J., Ivanauskas F., Beganskiene A., Kareiva A. Aqueous sol-gel synthesis route for the preparation of YAG: evaluation of sol-gel process by mathematical regression model // Journal of Sol–Gel Science Technology. 2007. V. 41. N 3. P. 193–201. doi: 10.1007/s10971-006-9002-6
 
14. Li J.-G., Ikegami T., Lee J.-H., Mori T., Yajima Y. Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant // Journal of European Ceramic Society. 2000. V. 20. N 14–15. P. 2395–2405. doi: 10.1016/S0955-2219(00)00116-3
 
15. Маслов В.А., Воронов В.В., Ермаков Р.П., Щербаков В.В., Усачев В.А., Кононенко Н.Э. Синтез нанопорошков YAG:Nd3+ золь-гель методом // Инженерный журнал: наука и инновации. 2012. № 8(8). С. 2.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2019 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика