НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
doi: 10.17586/2226-1494-2015-15-6-1147-1154
СПОСОБ ОБУЧАЮЩИХ ПРИМЕРОВ В РЕШЕНИИ ОБРАТНЫХ НЕКОРРЕКТНЫХ ЗАДАЧ СПЕКТРОСКОПИИ
Читать статью полностью
Ссылка для цитирования: Сизиков В.С., Степанов А.В. Cпособ обучающих примеров в решении обратных некорректных задач спектроскопии // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 6. С. 1147–1154.
Аннотация
Благодарности. Работа выполнена при поддержке РФФИ (грант № 13-08-00442).
Список литературы
1. Sizikov V.S. Application of modelling for solution of ill-posed problems // Electronic Modeling. 1981. N 6. P. 3–8 (in Russian).
2. Sizikov V.S. Generalized method for measurement data reduction. I. Processing of tonal (narrow-band) signals // Electronic Modeling. 1992. V. 13. N 4. P. 618–633.
3. Sizikov V.S. Generalized measurement reduction method. III. Results of numerical simulation // Electronic Modeling. 1993. V. 13. N 6. P. 1023–1035.
4. Verlan' A.F., Sizikov V.S. Integral Equations: Methods, Algorithms, Programs. Kiev: Nauk. Dumka, 1986. 544 p. (in Russian).
5. Sizikov V.S. Inverse Applied Problems and MatLab. St. Petersburg: Lan' Publ., 2011. 256 p. (in Russian).
6. Sizikov V.S. Integral Equations and MatLab in Tomography, Iconics, and Spectroscopy Problems. St. Petersburg-Saarbrücken: LAP, 2011. 252 p. (in Russian).
7. Verlan' A.F., Sizikov V.S., Mosentsova L.V. Method of computation experiments for solving integral equations in the inverse spectroscopy problem // Electronic Modeling. 2011. V. 33. N 2. P. 3–12 (in Russian).
8. Sizikov V.S., Krivykh A.V. Reconstruction of continuous spectra by the regularization method using model spectra // Optics and Spectroscopy. 2014. V. 117. N 6. P. 1010–1017. doi: 10.1134/S0030400X14110162
9. Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola, A.G. Numerical Methods for the Solution of Ill-Posed Problems. Dordrecht: Kluwer, 1995. 232 p.
10. Voskoboinikov Yu.E., Preobrazhenskii N.G., Sedel’nikov A.I. Mathematical Processing of Experiment in Molecular Gas Dynamics. Novosibirsk: Nauka, 1984. 240 p. (in Russian).
11. Engl H.W., Hanke M., Neubauer A. Regularization of Inverse Problems. Dordrecht: Kluwer, 1996. 328 p.
12. Petrov Yu.P., Sizikov V.S. Well-Posed, Ill-posed, and Intermediate Problems with Applications. Leiden-Boston: VSP, 2005. 234 p.
13. Leonov A.S., Yagola A.G. Adaptive optimal algorithms for ill-posed problems with sourcewise represented solutions // Computational Mathematics and Mathematical Physics. 2001. V. 41. N 6. P. 807–824.
14. Bakushinsky A., Goncharsky A. Ill-Posed Problems: Theory and Applications. Dordrecht: Kluwer, 1994. 268 p.
15. Kojdecki M.A. New criterion of regularization parameter choice in Tikhonov's method // Biuletyn WAT (Biul. Mil. Univ. Technol.). 2000. V. 49. N 1(569). P. 47–126.
16. Sizikov V.S. On discrepancy principles in solving ill-posed problems // Computational Mathematics and Mathematical Physics. 2003. V. 43. N 9. P. 1241–1259.
17. Sizikov V.S. Further development of the new version of a posteriori choosing regularization parameter in ill-posed problems // International Journal of Artificial Intelligence. 2015. V. 13. N 1. P. 184–199.
18. Morozov V.A. Methods for Solving Incorrectly Posed Problems. New York: Springer, 1984. 240 p.
19. Starkov V.N. Constructive Methods of Computational Physics in Interpretation Problems. Kiev: Nauk. Dumka, 2002. 264 p. (in Russian).
20. Gfrerer H. An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates // Mathematics of Computation. 1987. V. 49. N 180. P. 507–522.
21. Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter // Technometrics. 1979. V. 21. N 2. P. 215–222.
22. Hansen P.C., O'Leary D.P. The use of the L-curve in the regularization of discrete ill-posed problems // SIAM Journal of Scientific Computing. 1993. V. 14. N 6. P. 1487–1503.
23. Voskoboinikov Yu.E., Mukhina I.N. Local regularizing algorithm for high-contrast image and signal restoration // Optoelectronics, Instrumentation and Data Processing. 2000. N 3. P. 41–48.