Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор
НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2018-18-3-473-478
УДК 004.94
СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С ПОЛИМОДАЛЬНЫМИ ПОТОКАМИ
Читать статью полностью
Язык статьи - русский
Ссылка для цитирования: Жмылёв С.А., Алиев Т.И. Системы массового обслуживания с полимодальными потоками // Научно-технический вестник информационных технологий, механики и оптики. 2018. Т. 18. № 3. С. 473–478. doi: 10.17586/2226-1494-2018-18-3-473-478
Аннотация
Ссылка для цитирования: Жмылёв С.А., Алиев Т.И. Системы массового обслуживания с полимодальными потоками // Научно-технический вестник информационных технологий, механики и оптики. 2018. Т. 18. № 3. С. 473–478. doi: 10.17586/2226-1494-2018-18-3-473-478
Аннотация
При моделировании систем массового обслуживания традиционно предполагается, что распределение интервалов между поступающими в систему заявками имеет унимодальный вид. В то же время на практике встречаются системы с полимодальным распределением интервалов, имеющим две и более моды. При исследовании таких систем полимодальное распределение обычно заменяется унимодальным с совпадающими числовыми моментами, что упрощает процесс моделирования, но вносит методическую погрешность в получаемые результаты. Предметом исследования является анализ свойств полимодальных потоков и оценка величины этой погрешности. В качестве метода исследования предложено имитационное моделирование в среде AnyLogic, позволившее выявить зависимость погрешности от загрузки системы. Выявлено, что в высоконагруженных системах вносимая заменой погрешность не превышает 15%, но с уменьшением загрузки системы погрешность увеличивается и может достигать сотен процентов. В ходе многочисленных экспериментов выявлено, что значение коэффициента вариации интервалов между поступающими заявками в полимодальном потоке с увеличением межмодового интервала стремится к значению, не превышающему единицу. Практическая значимость работы состоит в упрощении процесса проектирования высокозагруженных вычислительных систем с использованием имитационных и аналитических моделей за счет замены полимодальных потоков унимодальными. При этом обеспечивается заданная точность расчета характеристик.
Ключевые слова: полимодальное распределение, система с очередями, аппроксимация полимодальных распределений, числовой момент, мультиэкспоненциальное распределение
Список литературы
Список литературы
-
Богатырев В.А., Богатырев С.В. Резервированная передача данных через агрегированные каналы в сети реального времени // Изв. вузов. Приборостроение. 2016. Т. 59. № 9. С. 735–740.doi: 10.17586/0021-3454-2016-59-9-735-740
-
Bogatyrev V.A. Protocols for dynamic distribution of requests through a bus with variable logic ring for reception authority transfer // Automatic Control and Computer Sciences. 1999. V. 33. N 1. P. 57–63.
-
Aliev T.I., Rebezova M.I., Russ A.A. Statistical methods for monitoring travel agencies // Automatic Control and Computer Sciences. 2015. V. 49. N 6. P. 321–327.doi: 10.3103/S0146411615060024
-
Jasin A., Alsaqour R., Abdelhaq M., Alsukour O., Saeed R. Review on current transport layer protocols for TCP/IP model // International Journal of Digital Content Technology and its Applications. 2012. V. 6. N 14. P. 495–503. doi: 10.4156/jdcta.vol6.issue14.58
-
Bogatyrev V.A., Parshutina S.A., Poptcova N.A., Bogatyrev A.V. Efficiency of redundant service with destruction of expired and irrelevant request copies in real-time clusters // Communications in Computer and Information Science. 2016.V. 678.P. 337–348.doi: 10.1007/978-3-319-51917-3_30
-
Bogatyrev V.A., Bogatyrev A.V. Functional reliability of a realtime redundant computational process in cluster architecture systems // Automatic Control and Computer Sciences. 2015.V. 49.N 1.P. 46–56.doi: 10.3103/S0146411615010022
-
Datey S.G., Ansari T. Mobile Ad-hoc networks its advantages and challenges // International Journal of Electrical and Electronics Research. 2015. V. 3. N 2. P. 491–496.
-
Богатырев В.А., Богатырев С.В. Эффективность резервирования и фрагментации пакетов при передаче по агрегированным каналам // Изв. вузов. Приборостроение. 2017. Т. 60. № 2. С. 165–170. doi: 10.17586/0021-3454-2017-60-2-165-170
-
Varshney L.R. Transporting information and energy simultaneously // Proc. IEEE Int. Symp. on Information Theory, ISIT. Toronto, Canada, 2008. P. 1612–1616. doi: 10.1109/ISIT.2008.4595260
-
Sridhar P., Sheikh-Bahaei S., Xia S., Jamshidi M. Multi-agent simulation using discrete event and soft-computing methodologies // Proc. IEEE Int. Conf. on Systems, Man and Cybernetics. Washington, 2003. V. 2. P. 1711–1716.doi: 10.1109/icsmc.2003.1244659
-
Ramesh Kumar K.R. Computer-aided design of MIC layout with postprocessor for photoplotter // Defence Science Journal. 1994. V. 44. N 4. P. 317–321.doi: 10.14429/dsj.44.4186
-
Prabhakar M., Singh J.N., Mahadevan G. Nash equilibrium and Marcov chains to enhance game theoretic approach for vanet security // Advances in Intelligent Systems and Computing. 2013. V. 174. P. 191–199. doi: 10.1007/978-81-322-0740-5_24
-
Алиев Т.И. Аппроксимация вероятностных распределений в моделях массового обслуживания // Научно-технический вестник информационных технологий, механики и оптики. 2013.№ 2 (84).С. 88–93.
-
Алиев Т.И. Трехмоментная аппроксимация вероятностных распределений в моделях массового обслуживания // Научно-технический вестник информационных технологий, механики и оптики. 2014.№ 2 (90).С. 107–110.
-
Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference and Prediction. 7th ed. Springer, 2013. 745 p.