DOI: 10.17586/2226-1494-2019-19-5-825-831


УДК535.417; 535.317; 778.38

ВЛИЯНИЕ ФОРМЫ ПРЕДСТАВЛЕНИЯ ОБЪЕКТА НА ГЛУБИНУ РЕЗКОСТИ ВОССТАНОВЛЕННЫХ ИЗОБРАЖЕНИЙ, ПОЛУЧЕННЫХ С ПОМОЩЬЮ СИНТЕЗИРОВАННЫХ ГОЛОГРАММ-ПРОЕКТОРОВ ФРЕНЕЛЯ

Корешев С.Н., Фролова М.А.


Читать статью полностью 
Язык статьи - русский

Ссылка для цитирования:
Корешев С.Н., Фролова М.А. Влияние формы представления объекта на глубину резкости восстановленных изображений, полученных с помощью синтезированных голограмм-проекторов Френеля // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 5. С. 825–831. doi: 10.17586/2226-1494-2019-19-5-825-831


Аннотация
Предмет исследования. Проведено исследование влияния формы представления объекта на глубину резкости изо- бражений, восстановленных с помощью синтезированных голограмм-проекторов Френеля. Метод. Исследование осу- ществлялось путем проведения математического моделирования синтеза и восстановления в виртуальном пространстве голограмм различных объектов с характеристическим размером 20 × 20. Метод основан на представлении объектной волны при синтезе голограммы в виде суперпозиции объектных волн, исходящих от двух одинаковых объектов, распо- ложенных на различных расстояниях от плоскости синтеза голограммы. Все численные эксперименты проводились с помощью специализированного программного комплекса при следующих значениях параметров синтеза и восстановле- ния голограмм: длина волны используемого излучения 13,5 нм, размер пиксела голограммы 20 × 20, расстояние между плоскостями объекта и голограммы 20,3 мкм, угол падения опорной волны 14,7°. Критерий качества восстановленного изображения выражался через число градаций при пороговой обработке этого изображения, при котором распределение интенсивности в восстановленном изображении было бы идентично распределению интенсивности в исходном объек- те. Основные результаты. На основании проведенных экспериментов была выявлена зависимость глубины резкости изображений, восстановленных с помощью синтезированных голограмм-проекторов Френеля, от формы представления объекта. В частности, было установлено, что наиболее эффективным является полное представление объекта на транспарантах, чем представление только одной его части, содержащей лишь малоразмерные элементы структуры объекта. Практическая значимость. Применение данного метода позволяет выбрать оптимальные параметры структуры объекта, т. е. вида и размеров составляющего его элементов при синтезе для разработки голограмм-проекторов Френеля с увеличенной глубиной резкости.

Ключевые слова: голограмма, синтезированная голограмма, восстановление голограммы, глубина резкости, синтез голограмм, форма представления объекта

Список литературы
1. Shain W.J., Vickers N.A., Goldberg B.B., Bifano T., Mertz J. Extended depth-of-field microscopy with a high-speed deformable mirror // Optics Letters. 2017. V. 42. N 5. P. 995–998. doi: 10.1364/OL.42.000995
2. Басов И.В., Краснобаев А.А. Методы увеличения глубины резкости оптико-цифровых регистраторов изображения // Препринты ИПМ им. М.В.Келдыша. 2010. № 37. С. 1–32.
3. Корешев С.Н., Никаноров О.В., Фролова М.А., Новиц- кая Я.А., Хисамов Р.И. Методы увеличения разрешающей способности и глубины резкости синтезированных голограмм-проекторов // Оптический журнал. 2016. Т. 83. № 12.С. 62–68.
4. Levenson M.D., Johnson K.M., Hanchett V.C., Chiang K. Projection photolithography by wave-front conjugation // Journal of the Optical Society of America. 1981. V. 71. N 6. P. 737–743. doi: 10.1364/JOSA.71.000737
5. Maiden A., McWilliam R., Purvis A., Johnson S., Williams G.L., Seed N.L., Ivey P.A. Nonplanar photolithography with computer- generated holograms // Optics Letters. 2005. V. 30. N 11. P. 1300–1302. doi: 10.1364/OL.30.001300
6. Bay C., Hübner N., Freeman J., Wilkinson T. Maskless photolithography via holographic optical projection // Optics Letters. 2010. V. 35. N 13. P. 2230–2232. doi: 10.1364/OL.35.002230
7. Корешев С.Н., Смородинов Д.С., Фролова М.А. Метод увеличения глубины резкости изображений плоских транспарантов, восстановленных с помощью синтезированных голограмм // Оптический журнал. 2018. Т. 85. № 11. С. 50–57. doi: 10.17586/1023-5086-2018-85-11-50-57
8. Цуканова Г.И., Карпова Г.В., Багдасарова О.В., Карпов В.Г., Кривопустова Е.В., Ежова К.В. Прикладная оптика. Часть 2: Учебно-методическое пособие / Под ред. проф. А.А. Шехонина. СПб.: СПб ГУИТМО, 2003. 77 с.
9. Корешев С.Н., Смородинов Д.С., Фролова М.А. Влияние периода дискретизации объекта на глубину резкости изо- бражений,восстанавливаемыхспомощьюсинтезированных голограмм-проекторов Френеля // Оптический журнал.2017. Т. 84. № 11. С.69–72.
10. Корешев С.Н., Никаноров О.В., Громов А.Д. Метод синтеза голограмм-проекторов, основанный на разбиении структуры объект анатиповые элементы, и программный комплекс для его реализации // Оптический журнал. 2012. Т. 79. № 12. С. 30–37.
11. Корешев С.Н., Никаноров О.В., Смородинов Д.С. Изобра- жающие свойства дискретных голограмм. I. Влияние дискретности голограмм на восстановленное изображение // Оптический журнал. 2014. Т. 81. № 3. С. 14–19.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2019 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика