Меню
Публикации
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор

НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2022-22-4-792-803
УДК 533.95:53.06
Численная модель импульсного подкритического стримерного сверхвысокочастотного разряда для задач плазменного поджига топливных смесей в газовой фазе
Читать статью полностью

Язык статьи - русский
Ссылка для цитирования:
Аннотация
Ссылка для цитирования:
Булат П.В., Волков К.Н., Мельникова А.И., Ренев М.Е. Численная модель импульсного подкритического стримерного сверхвысокочастотного разряда для задач плазменного поджига топливных смесей в газовой фазе // Научно-технический вестник информационных технологий, механики и оптики. 2022. Т. 22, № 4. С. 792–803. doi: 10.17586/2226-1494-2022-22-4-792-803
Аннотация
Предмет исследования. Разработана и верифицирована приближенная модель, предназначенная для оценки плазменного нагрева и конверсии топливных смесей при помощи подкритического стримерного сверхвысокочастотного разряда. Поджиг топливной смеси происходит в среде с давлением 13 кПа и температурой 150 К при наличии внешнего потока воздуха со скоростью до 500 м/с. Для фокусировки электромагнитного излучения использованы антенна-инициатор и плоское зеркало. Стехиометрическая смесь пропана и воздуха или чистый пропан подаются через полость в антенне. Мощность излучения составила 3 кВт. Метод. Модель реализована на основе схемы расщепления по физическим процессам, что позволило снизить требования к вычислительным ресурсам. Область, занятая плазмой, и ее проводимость заданы исходя из выбранного набора экспериментальных данных. Расчет плазменного поджига состоял из трех этапов. На первом этапе решены уравнения Больцмана для электронного газа в среде в нульмерной постановке для заданных параметров внешнего электрического поля. В результате получены функции распределения электронной энергии и коэффициентов реакций. На втором этапе рассчитаны уравнения Гельмгольца для распределения напряженности электромагнитного поля вблизи антенны-инициатора с учетом заданной проводящей области. По полученным распределениям электрического поля вычислены мощности джоулева нагрева и значения коэффициентов реакций. На третьем этапе получены решения уравнений: Навье-Стокса и переноса различных сортов частиц для сжимаемой среды с учетом процессов горения при заданных источниках локального нагрева и плазменных реакций. Основные результаты. Получены распределения температуры, состава среды, скорости движения среды при заданных локальной мощности нагрева и дополнительных реакций в области, занятой плазмой. Стехиометрическая смесь пропана с воздухом или чистый пропан, подаваемые через антенну, подожжены плазмой: смесь горит в небольшой области, а пропан окисляется в тонком слое смешения с воздухом. Выполнены сравнения результатов расчетов с данными физического эксперимента: и полей температур, и состава среды с фотографиями пламени из эксперимента. Численное исследование показало, что во всех рассмотренных условиях модель дает близкие к эксперименту результаты, но имеется завышение требуемой для поджига мощности излучения практические в два раза. Практическая значимость. Изучение процессов поджига газообразных смесей подкритическим сверхвысокочастотным разрядом представляет интерес для проектирования двигательных установок с повышенной надежностью и возможностью использования трудновоспламенимых смесей. Предлагаемая модель дает приближенные оценки, позволяя снизить требования к вычислительным ресурсам и времени счета по сравнению с традиционными моделями.
Ключевые слова: плазменный поджиг, численное моделирование, газовая динамика, подкритический разряд, плазма
Благодарности. Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в ходе реализации проекта «Создание опережающего научно-технического задела в области разработки передовых технологий малых газотурбинных, ракетных и комбинированных двигателей сверхлегких ракет-носителей, малых космических аппаратов и беспилотных воздушных судов, обеспечивающих приоритетные позиции российских компаний на формируемых глобальных рынках будущего», № FZWF-2020- 0015.
Список литературы
Благодарности. Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в ходе реализации проекта «Создание опережающего научно-технического задела в области разработки передовых технологий малых газотурбинных, ракетных и комбинированных двигателей сверхлегких ракет-носителей, малых космических аппаратов и беспилотных воздушных судов, обеспечивающих приоритетные позиции российских компаний на формируемых глобальных рынках будущего», № FZWF-2020- 0015.
Список литературы
-
Feng R., Wang Z., Sun M., Wang H., Huang Y., Yang Y., Liu X., Wang C., Tian Y., Luo T., Zhu J. Multi-channel gliding arc plasma-assisted ignition in a kerosene-fueled model scramjet engine // Aerospace Science and Technology. 2022. V. 126. P. 107606. https://doi.org/10.1016/j.ast.2022.107606
-
Starikovskaia S.M. Plasma assisted ignition and combustion // Journal of Physics D: Applied Physics. 2006. V. 39. N 16. P. R265–R299. https://doi.org/10.1088/0022-3727/39/16/R01
-
Bulat M.P., Bulat P.V., Denissenko P.V., Esakov I.I., Grachev L.P., Lavrov P.V., Volkov K.N., Volobuev I.A. Plasma-assisted ignition and combustion of lean and rich air/fuel mixtures in low- and high-speed flows // Acta Astronautica. 2020. V. 176. P. 700–709. https://doi.org/10.1016/j.actaastro.2020.04.028
-
Chen Q., Ge J., Zheng T., Che X., Nie W. The role of non-equilibrium plasma kinetic effect on GCH4/GOX rocket engine combustion performance // Journal of Physics: Conference Series. 2020. V. 1707. P. 012015. https://doi.org/10.1088/1742-6596/1707/1/012015
-
Kotel’nikov V.A., Kotel’nikov M.V., Filippov G.S. Electrical and physical parameters of plasma fluxes in exhaust from a liquid-propellant rocket engine // Journal of Machinery Manufacture and Reliability. 2018. V. 47. N 6. P. 488–494. https://doi.org/10.3103/S1052618818060067
-
Janev R.K., Reiter D. Collision processes of C2,3Hy and C2,3Hy+ hydrocarbons with electrons and protons // Physics of Plasmas. 2004. V. 11. N 2. P. 780–829. https://doi.org/10.1063/1.1630794
-
Zhou S., Nie W., Tian Y. High frequency combustion instability control by discharge plasma in a model rocket engine combustor // Acta Astronautica. 2021. V. 179. P. 391–406. https://doi.org/10.1016/j.actaastro.2020.11.010
-
Bulat M.P., Bulat P.V., Denissenko P.V., Esakov I.I., Grachev L.P., Volkov K.N., Volobuev I.A. Ignition of lean and stoichiometric air–propane mixture with a subcritical microwave streamer discharge // Acta Astronautica. 2018. V. 150. P. 153–161. https://doi.org/10.1016/j.actaastro.2017.11.030
-
Kim W., Cohen J. Plasma-assisted combustor dynamics control at ambient and realistic gas turbine conditions // Proceedings of the ASME Turbo Expo. 2017. V. 4A. P. V04AT04A037. https://doi.org/10.1115/GT2017-63477
-
Bulat M., Bulat P., Denissenko P., Esakov I., Grachev L., Volkov K., Volobuev I. Numerical Simulation of ignition of premixed air/fuel mixtures by microwave streamer discharge // IEEE Transactions on Plasma Science. 2019. V. 47. N 1. P. 62–68. https://doi.org/10.1109/TPS.2018.2869259
-
Sharma A., Subramaniam V., Solmaz E., Raja L. Fully coupled modeling of nanosecond pulsed plasma assisted combustion ignition // Journal of Physics D: Applied Physics. 2019. V. 52. N 9. P. 095204. https://doi.org/10.1088/1361-6463/aaf690
-
Saifutdinov A.I., Kustova E.V. Dynamics of plasma formation and gas heating in a focused-microwave discharge in nitrogen // Journal of Applied Physics. 2021. V. 129. N 2. P. 023301. https://doi.org/10.1063/5.0031020
-
Bityurin V.A., Bocharov A.N., Dobrovolskaya A.S., Kuznetsova T.N., Popov N.A., Filimoniva E.A. Numerical modeling of pulse-periodic nanosecond discharges // Journal of Physics: Conference Series. 2021. V. 2100. N 1. P. 012032. https://doi.org/10.1088/1742-6596/2100/1/012032
-
Popov N.A., Starikovskaia S.M. Relaxation of electronic excitation in nitrogen/oxygen and fuel/air mixtures: fast gas heating in plasma-assisted ignition and flame stabilization // Progress in Energy and Combustion Science. 2022. V. 91. P. 100928. https://doi.org/10.1016/j.pecs.2021.100928
-
Zheng T., Che X., Li L., Chen C., Nie W., Li X. Numerical study of plasma assisted combustion for a rocket combustor using GCH4/GOX as propellants // Journal of Physics: Conference Series. 2018. V. 1064. P. 012013. https://doi.org/10.1088/1742-6596/1064/1/012013
-
Zheng Z., Nie W., Zhou S., Tian Y., Zhu Y., Shi T., Tong Y. Characterization of the effects of a plasma injector driven by AC dielectric barrier discharge on ethylene-air diffusion flame structure // Open Physics. 2020. V. 18. N 1. P. 58–73. https://doi.org/10.1515/phys-2020-0008
-
Deng J., He L., Liu X., Chen Y. Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber // Plasma Science and Technology. 2018. V. 20. N 12. P. 125502. https://doi.org/10.1088/2058-6272/aacdef
-
Zettervall N., Fureby C., Nilsson E.J.K. A reduced chemical kinetic reaction mechanism for kerosene-air combustion // Fuel. 2020. V. 269. P. 117446. https://doi.org/10.1016/j.fuel.2020.117446
-
Ma J.Z., Luan M.Y., Xia Z.-J., Wang J.-P., Zhang S.-J., Yao S.-B., Wang B. Recent progress, development trends, and consideration of continuous detonation engines // AIAA Journal. 2020. V. 58. N 12. P. 4976–5035. https://doi.org/10.2514/1.J058157
-
Bulat P.V., Chernyshov P., Esakov I.I., Grachev L., Lavrov P., Melnikova A.I., Volkov K.N., Volobuev I.A. Multi-point ignition of air/fuel mixture by the initiated subcritical streamer discharge // Acta Astronautica. 2022. V. 194. P. 504–513. https://doi.org/10.1016/j.actaastro.2021.09.043
-
Dobrov Y.V., Lashkov V.A., Mashek I.Ch., Khoronzhuk R.S. Investigation of heat flux on aerodynamic body in supersonic gas flow with local energy deposition // AIP Conference Proceedings. 2018. V. 1959. P. 050009. https://doi.org/10.1063/1.5034637
-
Булат П.В., Есаков И.И., Грачев Л.П., Денисенко П.В., Булат М.П., Волобуев И.А. Математическое и компьютерное моделирование горения и детонации подкритическим стримерным разрядом // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 4. С. 569–592. https://doi.org/10.17586/2226-1494-2017-17-4-569-592
-
Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures // Plasma Sources Science and Technology. 1992. V. 1. N 3. P. 207–220. https://doi.org/10.1088/0963-0252/1/3/011