Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор
НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2022-22-5-824-831
УДК 535.8
Оптические свойства планарных плазмон-активных поверхностей, модифицированных золотыми нанозвездами
Читать статью полностью
Язык статьи - русский
Ссылка для цитирования:
Аннотация
Ссылка для цитирования:
Зюбин А.Ю., Кон И.И., Кундалевич А.А., Демишкевич Е.А., Матвеева К.И., Зозуля А.С., Евтифеев Д.О., Полторабатько Д.А., Самусев И.Г. Оптические свойства планарных плазмон-активных поверхностей, модифицированных золотыми нанозвездами // Научно-технический вестник информационных технологий, механики и оптики. 2022. Т. 22, № 5. С. 824–831. doi: 10.17586/2226-1494-2022-22-5-824-831
Аннотация
Предмет исследования. Рассмотрены экспериментальные и теоретические результаты изучения оптических свойств планарных, модифицированных золотыми нанозвездами кварцевых поверхностей, полученных с применением спектроскопии гигантского комбинационного рассеяния света. Созданы функционализированные нанозвезды поверхности — прототипы оптических сенсоров. Приведены результаты моделирования, химического синтеза и исследования оптических и морфологических свойств исследованных структур. Метод. Предложен комплексный метод создания и оценки оптических свойств планарных наноструктур. Моделирование реализовано с использованием метода конечных разностей во временной области (FDTD, Finite-Difference Time-Domain) напряженности электрического поля вблизи поверхностей нанозвезд золота в коллоидных растворах и на кремниевой поверхности. При проведении моделирования учтены такие параметры, как размер частиц и зависимость эффективного усиления электромагнитного поля от морфологических параметров нанозвезд. Представлена перспективность теоретического подхода к расчетам рассмотренных структур, их химического синтеза и исследования оптических свойств. Основные результаты. Выполнен расчет параметров электрического поля и оптических свойств вблизи нанозвезд разных размеров. Параметры рассчитаны методом конечных разностей во временной области. Определены оптимальные размеры нанозвезд при изменении толщины поверхностных слоев для получения максимальных значений рассеяния и дальнейшего использования исследованных структур гигантского комбинационного рассеяния света в экспериментах. Выполнен синтез нанозвезд, исследованы их оптические и морфологические свойства, а также проведена функционализация кварцевых поверхностей и созданы прототипы сенсоров с целью дальнейшей оценки усиления сигнала (комбинационного рассеяния света). По результатам математического моделирования определены оптимальные размеры для синтеза нанозвезд, который осуществлен двухступенчатым химическим методом с использованием зародышевых частиц. Для проведения экспериментальной части по получению спектров гигантского комбинационного рассеяния применен спектрометр Centaur U (ООО «НаноСканТехнология», Россия). Спектрометр оснащен тремя источниками: He-Ne лазером (λ = 632,8 нм, 17 мВт) и двумя DPSS лазерами (λ = 532 нм и λ = 473 нм, 50 мВт). В процессе проведения эксперимента использованы He-Ne лазер и DPSS лазер с длиной волны λ = 532 нм. В оптическую схему спектрометра включен микроскоп Olympus BX41 (Olympus, Япония) с объективом 100× (NA 0,9) для позиционирования луча и сбора рассеянных фотонов. Монохроматор спектрометра имеет фокусное расстояние 800 мм, голографическую дифракционную решетку 300 шт/мм и снабжен термоэлектрическим охлаждаемым ПЗС-детектором 1024 × 256 пикселов (Andor Tech., Великобритания). Практическая значимость. В результате работы получены функционализированные наночастицы поверхности — прототипы оптических сенсоров. Показано, что экспериментальный коэффициент усиления сигнала комбинационного рассеяния света может составлять не менее чем 104 раз. Полученные результаты могут служить основой для получения необходимых размеров нанозвезд в методах контролируемого химического синтеза коллоидных наночастиц. Результаты могут быть применены для разработки биосовместимых и высокочувствительных оптических сенсоров на базе эффекта комбинационного рассеяния света.
Ключевые слова: спектроскопия комбинационного рассеяния света, нанозвезда, плазмон, оптический сенсор, моделирование оптических свойств
Благодарности. Работа выполнена в рамках Соглашения с Минобрнауки Российской Федерации № 75-02-2022-872.
Список литературы
Благодарности. Работа выполнена в рамках Соглашения с Минобрнауки Российской Федерации № 75-02-2022-872.
Список литературы
-
Israël M., Schwartz L. The metabolic advantage of tumor cells // Molecular Cancer. 2011. V. 10. N 1. P. 1–12. https://doi.org/10.1186/1476-4598-10-70
-
Pan Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W. Size‐dependent cytotoxicity of gold nanoparticles // Small. 2007. V. 3. N 11. P. 1941–1949. https://doi.org/10.1002/smll.200700378
-
Takeuchi I., Nobata S., Oiri N., Tomoda K., Makino K. Biodistribution and excretion of colloidal gold nanoparticles after intravenous injection: effects of particle size // Bio-Medical Materials and Engineering. 2017. V. 28. N 3. P. 315–323. https://doi.org/10.3233/BME-171677
-
Fleischmann M., Hendra P.J., McQuillan A.J. Raman spectra of pyridine adsorbed at a silver electrode // Chemical Physics Letters. 1974. V. 26. N 2. P. 163–166. https://doi.org/10.1016/0009-2614(74)85388-1
-
Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media // IEEE Transactions on Antennas and Propagation. 1966. V. 14. N 3. P. 302–307. https://doi.org/10.1109/TAP.1966.1138693
-
Umashankar K., Taflove A. A novel method to analyze electromagnetic scattering of complex objects // IEEE Transactions on Electromagnetic Compatibility. 1982. V. EMC-24. N 4. P. 397–405. https://doi.org/10.1109/TEMC.1982.304054
-
Taflove A., Hagness S.C., Piket-May M. Computational electromagnetics: the finite-difference time-domain method // The Electrical Engineering Handbook. Academic Press, 2005. P. 629–670. https://doi.org/10.1016/B978-012170960-0/50046-3
-
Gedney S.D. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Springer Cham, 2011. 250 p. https://doi.org/10.1007/978-3-031-01712-4
-
Sikdar D., Rukhlenko I.D., Cheng W., Premaratne M. Optimized gold nanoshell ensembles for biomedical applications // Nanoscale Research Letters. 2013. V. 8. N 1. P. 142. https://doi.org/10.1186/1556-276X-8-142
-
Cheng J., Gu Y.-J., Cheng S.H., Wong W.-T. Surface functionalized gold nanoparticles for drug delivery // Journal of Biomedical Nanotechnology. 2013. V. 9. N 8. P. 1362–1369. https://doi.org/10.1166/jbn.2013.1536
-
Mehrdel B., Aziz A.A., Yoon T.L. Resonance position and extinction efficiency of a single silica coated gold nanoshell when size effects of core is matter // AIP Conference Proceedings. 2017. V. 1838. N 1. P. 020012. https://doi.org/10.1063/1.4982184
-
Nikoobakht B., El-Sayed M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method // Chemistry of Materials. 2003. V. 15. N 10. P. 1957–1962. https://doi.org/10.1021/cm020732l
-
Yee K.S., Chen J.S. The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations // IEEE Transactions on Antennas and Propagation. 1997. V. 45. N 3. P. 354–363. https://doi.org/10.1109/8.558651
-
Liebig F., Henning R., Sarhan R.M., Prietzel C., Schmitt C.N.Z., Bargheerb M., Koetz J. A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions // RSC Advances. 2019. V. 9. N 41. P. 23633–23641. https://doi.org/10.1039/C9RA02384D
-
Polte J., Ahner T.T., Delissen F., Sokolov S., Emmerling F., Thünemann A.F., Kraehnert R. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation // Journal of the American Chemical Society. 2010. V. 132. N 4. P. 1296–1301. https://doi.org/10.1021/ja906506j