Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор
НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2022-22-5-839-845
УДК 681.784.8
Применение методов биорадиофотоники для обработки биоэлектрических сигналов
Читать статью полностью
Язык статьи - русский
Ссылка для цитирования:
Аннотация
Ссылка для цитирования:
Зайченко К.В., Гуревич Б.С., Рогов С.А., Кордюкова А.А., Кузьмин М.С. Применение методов биорадиофотоники для обработки биоэлектрических сигналов // Научно-технический вестник информационных технологий, механики и оптики. 2022. Т. 22, № 5. С. 839–845. doi: 10.17586/2226-1494-2022-22-5-839-845
Аннотация
Предмет исследования. В работе рассмотрено применение современных и перспективных методов биорадиофотоники для обработки биоэлектрических сигналов на базе оптических и акустооптических устройств. Основные трудности применения этих методов связаны с тем, что исследуемые сигналы являются низкочастотными, и требуется разработка специальных мер адаптации рассматриваемых устройств для их обработки. Метод. Предложено вводить информационный биоэлектрический сигнал в акустооптическую систему обработки с временны́м интегрированием, используя модуляцию высокочастотной несущей с линейной частотной модуляцией низкочастотным информационным сигналом. Такая система должна обеспечить реализацию операции свертки с помощью ячеек Брэгга, которые ориентированы навстречу друг к другу. Предложенный подход обеспечил возможность вычисления спектра мощности биоэлектрического сигнала и его вейвлет-преобразования, причем наличие несущей с линейной частотной модуляцией обязательно для обоих видов обработки. Впервые использован метод предварительного сжатия биоэлектрического сигнала для его переноса в высокочастотную область. Это позволило вводить низкочастотный информационный сигнал в высокочастотную акустооптическую систему обработки с пространственным интегрированием. В простом акустооптическом корреляторе с опорным транспарантом на выходе фотоприемника сформирована огибающая корреляционной функции. Применен набор опорных транспарантов в многоканальном корреляторе для реализации вейвлет-анализа протяженного биоэлектрического сигнала с использованием материнского вейвлета. Предварительная оптическая обработка исследуемого сигнала осуществлена на жидкокристаллических матрицах. Основные результаты. Выполнен анализ обработки электрокардиосигналов, снятых с подопытных животных (крыс) с использованием жидкокристаллической матрицы для ввода этих сигналов в оптическую систему. Показано, что спектральная и вейвлет-обработка могут быть реализованы без использования модуляции высокочастотной несущей низкочастотным информационным сигналом. Практическая значимость. Использование полученных результатов позволит создать новое семейство устройств вейвлет-обработки биоэлектрических сигналов, реализуемой в реальном масштабе времени, что внесет важный вклад в совершенствование диагностики заболеваний сердечно-сосудистой системы, головного мозга и центральной нервной системы.
Ключевые слова: биоэлектрические сигналы, оптическая обработка, акустооптические спектроанализаторы, конвольверы и корреляторы, жидкокристаллические матрицы, сжатие информационных сигналов
Благодарности. Работа поддержана Минобрнауки Российской Федерации, госзадание № 075-00761-22-00, тема № FZZM-2022-0011.
Список литературы
Благодарности. Работа поддержана Минобрнауки Российской Федерации, госзадание № 075-00761-22-00, тема № FZZM-2022-0011.
Список литературы
-
Зайченко К.В., Гуревич Б.С. Спектральная обработка биоэлектрических сигналов // Медицинская техника. 2021. № 1. С. 12–14.
-
Гуляев Ю.В., Зайченко К.В. Электрокардиография сверхвысокого разрешения. Задачи. Проблемы. Перспективы // Биомедицинская радиоэлектроника. 2013. № 9. С. 5–15.
-
Зайченко К.В., Гуревич Б.С. Электроэнцефалография в расширенных амплитудном и частотном диапазонах // Научная сессия ГУАП: Сборник докладов научной сессии, посвященной Всемирному дню авиации и космонавтики. В 3-х ч. Ч. II. Технические науки. СПб.: ГУАП, 2019. С. 150–152.
-
Zaichenko K.V., Gurevich B.S., Kordyukova A.A. Method of reliable electrocardiographic control of ischemia appearance in investigations with experimental animals // Proc. of the 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2021. P. 78–81. https://doi.org/10.1109/USBEREIT51232.2021.9455029
-
Yu F.T.S., Jutamulia S. Optical Signal Processing, Computing, and Neural Networks. New York: John Wiley & Sons, 1992. 419 p.
-
Наумов К.П., Ушаков В.Н. Акустооптические сигнальные процессоры. М.: Science Press, 2002.80 c.
-
Petrunkin V., Aksyonov E., Starikov G. Wavelet transform in optical processors: potentials and perspectives // Proceedings of SPIE. 2002. V. 4680. P. 256–263. https://doi.org/10.1117/12.454687
-
VanderLugt A. Optical Signal Processing. New York, N.Y.: Wiley, 1991. 632 p.
-
Feng W., Yan Y., Jin G., Wu M., He Q. Dual multichannel optical wavelet transform processor // Proceedings of SPIE. 1999. V. 3804. P. 249–255. https://doi.org/10.1117/12.363971
-
Wang Y., Ma L., Shi S. An optical method for production of Haar wavelet // Optics Communications. 2002. V. 204. N 1-6. P. 107–110. https://doi.org/10.1016/S0030-4018(02)01246-4
-
Turpin T.M. Time integrating optical processors // Proceedings of SPIE. 1978. V. 154. P. 196–203. https://doi.org/10.1117/12.938255
-
Kellman P. Time integrating optical signal processing // Optical Engineering. 1980. V. 19. N 3. P. 370–375. https://doi.org/10.1117/12.7972521
-
Montgomery R.M. Acousto-optical signal processing system. Patent US3634749. 1972.
-
Zaichenko K.V., Gurevich B.S. Early diagnostics of ischemia by means of electrocardiographic signals processing using acousto-optic Fourier processors with time integration // Proceedings of SPIE. 2019. V. 11075. P. 110751U. https://doi.org/10.1117/12.2535709
-
Зайченко К.В., Гуревич Б.С. Акустооптическая вейвлет-обработка биоэлектрических сигналов // Письма в Журнал технической физики. 2022. Т. 48.№ 1. С. 36–38. https://doi.org/10.21883/PJTF.2022.01.51877.18988
-
Zaichenko K.V. High accuracy adaptive frequency measurements for low signals in acoustic optical processors // Proceedings of SPIE. 1994. V. 2051. P. 732–738. https://doi.org/10.1117/12.165963
-
Аристархов Г.М., Воробьев А.В., Гуляев Ю.В., Дмитриев В.Ф., Зайченко К.В. и др. Фильтрация и спектральный анализ радиосигналов. Алгоритмы. Структуры. Устройства. М.: Радиотехника,2020. 504 с.
-
Kuzmin M.S., Rogov S.A. Spatial light modulator based on liquid-crystal video projector matrix for information processing systems // Optical Memory & Neural Networks (Information Optics). 2013. V. 22. N 4. P. 261–266. https://doi.org/10.3103/S1060992X13040103
-
Кузьмин М.С., Рогов С.А. Ввод низкочастотных сигналов в оптические системы обработки информации с жидкокристаллической матрицей на входе // XI международная конференция по фотонике и информационной оптике: Сборник научных трудов. М.: НИЯУ МИФИ, 2022. С. 611–612.
-
Кузьмин М.С., Рогов С.А. Анализатор свернутого спектра с жидкокристаллическим устройством ввода сигналов // Письма в Журнал технической физики. 2014. Т. 40. № 15. С. 1–5.
-
Кузьмин М.С., Рогов С.А. Обработка одномерных сигналов с растровым вводом в двумерных оптических корреляторах // Журнал технической физики. 2015. Т. 85. № 4. С. 156–158.
-
Кузьмин М.С., Рогов С.А. Оптический фурье-процессор с жидкокристаллическим устройством ввода информации // Оптический журнал. 2015. Т. 82. № 3. С. 23–29.