Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор
НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2023-23-2-252-262
УДК 62.50
Вариационная задача адаптивного оптимального управления. Теоретический и прикладной компьютерный анализ
Читать статью полностью
Язык статьи - русский
Ссылка для цитирования:
Аннотация
Ссылка для цитирования:
Ведяков А.А., Милованович Е.В., Слита О.В., Тертычный-Даури В.Ю. Вариационная задача адаптивного оптимального управления. Теоретический и прикладной компьютерный анализ // Научнотехнический вестник информационных технологий, механики и оптики. 2023. Т. 23, № 2. С. 252–262. doi: 10.17586/2226-1494-2023-23-2-252-262
Аннотация
Предмет исследования. Рассмотрена задача адаптивного оптимального управления динамической системой, относящейся к классу условных вариационных задач с подвижными границами. Проведено вариационное и компьютерное исследования управляемого адаптивного движения материальной точки в задаче минимизации энергетического функционала качества с подвижной, заранее незаданной правой трансграницей. А также в случае, когда масса точки меняется в зависимости от нефиксированного конечного момента времени. Метод. Задача решена с использованием схем и процедур классического вариационного исчисления. Процедуры включают вывод вариации вспомогательного функционала качества, соответствующих уравнений Эйлера и адаптивного алгоритма оценивания. При решении общей условной вариационной задачи исследована полученная замкнутая система дифференциальных уравнений для формирования адаптивной оптимальной системы управления динамическим объектом с заданным функционалом качества. Основные результаты. Результаты безусловной постановки задачи обобщены на случай дополнительных дифференциальных (неголономных) и голономных связей. В вариационной адаптивной задаче оптимального управления условие трансверсальности сформулировано в терминах условия локального программирования. Достигнутые результаты имеют отношение к полученным конкретным уравнениям, выражениям и формулам относительно изучаемого модельного примера. Получены графики основных функций времени, определяющие характер движения объекта управления и качество переходных процессов. Практическая значимость. Разработанная вариационная схема адаптивного оптимального синтеза может быть использована при расчете и проектировании управляемых динамических систем. Построенная оптимизационная схема перспективна, в том числе для применения в системах, у которых время функционирования заранее не фиксировано. Предложенные алгоритмы адаптивного оптимального управления для целенаправленного движения изучаемой материальной точки успешно прошли тестирование в цифровом режиме и показали свою эффективность. Сделан вывод, что алгоритмы являются перспективными для дальнейшего использования в более сложных нелинейных адаптивных системах динамического оптимального регулирования.
Ключевые слова: подвижная граница, материальная точка, условный функционал качества, оптимальное управление, вариация функционала, условие трансверсальности
Список литературы
Список литературы
-
Блисс Д.Э. Лекции по вариационному исчислению. М.: Издательство иностранной литературы, 1950. 348 с.
-
Гельфанд И.М., Фомин С.В. Вариационное исчисление. М.: Физматгиз, 1961. 228 с.
-
Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1969. 424 с.
-
Янг Л. Лекции по вариационному исчислению и теории оптимального управления. М.: Мир, 1974. 488 с.
-
Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М.: Наука, 1979. 429 с.
-
Болтянский В.Г. Математические методы оптимального управления. М.: Наука, 1969. 408 с.
-
Дикусар В.В., Милютин А.А. Качественные и численные методы в принципе максимума. М.: Наука, 1989. 143 с.
-
Кротов В.Ф., Гурман В.И. Методы и задачи оптимального управления. М.: Наука, 1973. 446 с.
-
Субботин А.И. Минимаксные неравенства и уравнения Гамильтона-Якоби. М.: Наука, 1991. 215 с.
-
Тертычный-Даури В.Ю. Галамех, Т.4. Оптимальная механика. М.: Физматлит, 2019. 608 с.
-
Фомин В.Н., Фрадков А.Л., Якубович В.А. Адаптивное управление динамическими объектами. М.: Наука, 1981. 448 с.
-
Ведяков А.А., Милованович Е.В., Тертычный-Даури В.Ю., Тимофеева Г.В. Оптимальное управление как условная вариационная задача с подвижной правой границей // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 1. С. 59–66. https://doi.org/10.17586/2226-1494-2019-19-1-59-66
-
Дегтярев Г.Л. Синтез оптимального управления в системе с распределёнными параметрами с помощью функций Ляпунова // Прямой метод в теории устойчивости и его приложения. Новосибирск: Наука, 1981. C. 75–83.
-
Матвеев А.С. Вариационный анализ в задачах оптимизации систем с распределёнными параметрами и вектор-функции множества // Сибирский математический журнал. 1990. Т. 31. № 6. С. 127–141.
-
Панченков А.Н. Экстремальные задачи управления движением с локальными функционалами // Проблемы устойчивости движения, аналитической механики и управления движением. Новосибирск: Наука, 1979. С. 190–202.
-
Тертычный-Даури В.Ю. Галамех. Т.1. Адаптивная механика. М.: Физматлит, 2019. 544 с.
-
Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976. 576 с.
-
Фомин В.Н. Математическая теория обучаемых опознающих систем. Л.: Издательство Ленинградского университета, 1976. 236 с.
-
Тертычный-Даури В.Ю. Адаптивная механика. М.: Факториал Пресс, 2003. 464 с.
-
Цыпкин Я.З. Оптимальные алгоритмы оценивания параметров в задачах идентификации // Автоматика и телемеханика. 1982. № 12. C. 9–23.
-
Цыпкин Я.З. Оптимальные адаптивные системы управления // Доклады АН СССР. 1984. Т. 277. № 5. C. 1091–1096.
-
Тертычный-Даури В.Ю. Решение вариационных динамических задач в условиях параметрической неопределенности // Проблемы передачи информации. 2005. Т. 41. № 1. C. 53–67.
-
Тертычный-Даури В.Ю. Вариационные динамические задачи с параметрами и их адаптивная интерпретация // Автоматика и телемеханика. 2005. № 9. C. 114–128.
-
Тертычный-Даури В.Ю. Условная задача оптимального управления: адаптивный метод решения // Автоматика и телемеханика. 2006. № 3. C. 54–67.
-
Anderson B., Moore J. Optimal Control: Linear Quadratic Methods. N.Y.: Prentice-Hall Inc., 1990. 352 p.
-
Leitmann G. The Calculus of Variations and Optimal Control. N.Y.: Plenum Press, 1981. 312 p. https://doi.org/10.1007/978-1-4899-0333-4
-
Landau I.D. Adaptive Control Systems: The Model Reference Approach. N.Y.: Marcel Dekker, 1979. 406 p.
-
Блэтт Д., Лайнесс Д. Практическое использование вариационных принципов в нелинейной механике // Механика. Сборник переводов. М.: Мир, 1964. № 5. C. 5–11.
-
Mayne D.Q., Polak E. First-order strong variation algorithms for optimal control problems with terminal inequality constraints // Journal of Optimization Theory and Applications. 1975. V. 16. N 3-4. P. 277–301. https://doi.org/10.1007/bf01262938
-
Trullson E., Ljung L. Adaptive control based on explicit criterion minimization // Automatica. 1985. V. 21. N 4. P. 385–399. https://doi.org/10.1016/0005-1098(85)90075-5
-
Hestenes M.R. On variational theory and optimal control theory // Journal of the Society for Industrial and Applied Mathematics Series A Control. 1965. V. 3. N 1. P. 23–48. https://doi.org/10.1137/0303003
-
McShane E.Y. Relaxed controls and variational problems // SIAM Journal on Control. 1967. V. 5. N 3. P. 438–485. https://doi.org/10.1137/0305027