Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор

НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2023-23-6-1077-1083
УДК 535.2
Моделирование освещенности земной поверхности для выбора режимов работы источника излучения
Читать статью полностью

Язык статьи - русский
Ссылка для цитирования:
Аннотация
Ссылка для цитирования:
Алтухов А.И., Коршунов Д.С. Моделирование освещенности земной поверхности для выбора режимов работы источника излучения // Научно-технический вестник информационных технологий, механики и оптики. 2023. Т. 23, № 6. С. 1077–1083. doi: 10.17586/2226-1494-2023-23-6-1077-1083
Аннотация
Введение. Предложен подход к получению светосигнальных характеристик в графоаналитическом виде для обоснования режимов работы излучающей аппаратуры оптико-электронных комплексов дистанционного зондирования Земли. Данные комплексы применяются для ведения съемки в условиях недостаточной естественной освещенности местности по причине сложного рельефа, географического положения района или низкого положения Солнца над плоскостью местного горизонта. Методы. С использованием представленной модели проведены расчеты энергетической освещенности земной поверхности. Построены зависимости, учитывающие влияние на распределение спектральной плотности потока электромагнитного излучения положения Солнца над плоскостью местного горизонта для конкретных дат и суточного времени. Основные результаты. Получены светосигнальные характеристики, которые можно использовать для обоснования режимов работы излучающей аппаратуры оптико-электронных комплексов. На основе светосильных характеристик сделан вывод о необходимости искусственного усиления спектральной плотности потока излучения в заданном диапазоне спектра с целью достижения требуемой освещенности снимаемого участка земной поверхности на конкретные дату и время. Усиление спектральной плотности потока излучения позволило создать экспозицию, требуемую для формирования изображений с высокими изобразительными свойствами. Обсуждение. Результаты выполненного моделирования могут найти применение в задаче прогнозирования качества изображений, полученных с использованием искусственных источников оптической подсветки. Предложенный подход позволяет получить изображения, характеризуемые высоким значением линейного разрешения на местности, не прибегая к повышению времени накопления заряда фотоприемным устройством регистрирующей аппаратуры. Применение рассмотренного подхода наиболее актуально в условиях ведения аэрокосмической съемки.
Ключевые слова: оптическая подсветка, светосигнальная характеристика, оптико-электронное комплексы
Список литературы
Список литературы
- Бакланов А.И. Системы наблюдения и мониторинга: учебное пособие. М.: Бином. 2009. 234 c.
- Юрченко В.И. Особенности проектирования аэрофотосъемочных работ с беспилотного воздушного судна // Вестник СГУГиТ. 2021. Т. 26. № 2. С. 65–81. https://doi.org/10.33764/2411-1759-2021-26-2-65-81
- Емельянов С.Г., Атакищев О.И., Алтухов А.И., Гнусарев Н.В., Коршунов Д.С. К вопросу учета условий освещенности при съемке космических объектов фотографическими средствами // Известия Юго-Западного государственного университета. 2012. № 3-1(42). С. 58–62.
- Хрущ Р.М. Аэрокосмические методы. Часть 1. Аэрокосмические съемки и теория одиночного фотоснимка: учебное пособие. СПб.: Издательство СанктПетербургского университета, 2009. 160 с.
- Моисеев В.С. Прикладная теория управления беспилотными летательными аппаратами: монография. Казань: ГБУ «Республиканский центр мониторинга качества образования», 2013. 768 с. (Серия «Современная прикладная математика и информатика»).
- Занин К.А. Методы проектирования оптико-электронных комплексов космических аппаратов // Проектирование автоматических космических аппаратов для фундаментальных научных исследований. Т. 1. М.: МАИ, 2013. С. 261–335.
- Григорьев А.Н., Алтухов А.И., Коршунов Д.С. Подход к ведению аэросъемки местности с использованием компоновки оптико-электронных камер // Научнотехнический вестник информационных технологий, механики и оптики. 2020. Т. 20. № 3. С. 318–326. https://doi.org/10.17586/2226-1494-2020-20-3-318-326
- Карасик В.Е., Орлов В.М. Локационные лазерные системы видения. М.: Изд-во МГТУ им. Н.Э. Баумана, 2013. 478 с.
- Григорьев А.Н., Алтухов А.И., Коршунов Д.С. Подход к получению изображений объектов на основе данных непрямой лазерной локации // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21. № 1. С. 31– 39. https://doi.org/10.17586/2226-1494-2021-21-1-31-39
- Gariepy G., Krstajic N., Henderson R., Li C., Thomson R.R., Buller G.S., Heshmat B., Raskar R., Leach J., Faccio D. Single-photon sensitive light-in-fight imaging // Nature Communications. 2015. V. 6. P. 6021. https://doi.org/10.1038/ncomms7021
- Тихонов Е.В., Маркушин Г.Н., Кошелев А.В., Векшин Ю.А., Алмазов А.А., Швалев А.В., Коротаев В.В. Параметрический лазерный дальномер с пассивной системой термостабилизации // Оптический журнал. 2023. Т. 90. № 10. С. 80–92. http://doi.org/10.17586/1023-5086-2023-90-10-80-92
- Григорьев А.Н., Замарин А.И., Караваев М.Н. Метод формирования групповых объектов для космических средств дистанционного зондирования Земли // Научнотехнический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 4. С. 587–594. https://doi.org/10.17586/2226-1494-2015-15-4-587-594
- Молчанов А.С. Чаусов Е.В. Методика оценивания линейного разрешения авиационных цифровых оптико-электронных систем в процессе летных испытаний // Известия Тульского государственного университета. Технические науки. 2019. № 2. С. 140–150.
- Григорьев А.Н., Коршунов Д.С., Беляев А.С. Прогнозирование качества гиперспектральных снимков космических систем дистанционного зондирования // Труды Военно-космической академии им. А.Ф. Можайского. 2010. № 629. С. 143– 147.
- Демин А.В., Моисеева М.И. Инвариантная модель для оценки коэффициента пропускания атмосферы при мониторинге объектов в оптическом диапазоне спектра // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. 2012. № 1. С. 9– 14.
- Маркушин Г.Н., Коротаев В.В., Кошелев А.В., Самохина И.А., Васильев А.С., Тимофеев А.Н., Васильева А.В., Ярышев С.Н. Двухдиапазонные оптикоэлектронные системы обнаружения субъектов браконьерского промысла // Оптический журнал. 2022. Т. 89. № 9. С. 36–48. http://doi.org/10.17586/1023-5086-2022-89-09-36-48
- Злобин В.К., Еремеев В.В. Обработка аэрокосмических изображений. М.: Физматлит, 2006. 288 с.